摘要
与传统静态数据库中的数据不同,数据流是一个按时间到达的有序的项集,这使得经典的频繁项集挖掘算法难以适用到数据流中.根据数据流的特点,提出了数据流频繁项集挖掘算法FP-SegCount.该算法将数据流分段并利用改进的FP-growth算法挖掘分段中的频繁项集.然后,利用Count Min Sketch进行项集计数.算法解决了压缩统计和计算快速高效的问题.通过和FP-DS算法的实验对比,FP-SegCount算法具有较好的时间效率.
Different from data in traditional static database, a data stream is an ordered sequence of items that arrives in timely order. Classical frequent item - sets mining method is difficult to apply to data stream. Based on the characteristics of data streams, FP - SegCount algorithm is proposed in this paper to mine frequent item - sets from data streams. The algorithm partitions the data stream and uses modified FP - growth algorithm to mine frequent item- sets in every segment. It then counts item -sets in Count Min Sketch. This algorithm solves compressed statistics and ensures effective computation. Through experimentation and comparison with FP - DS algorithm, FP SegCount algorithm is shown to have a good time efficiency.
出处
《昆明理工大学学报(理工版)》
北大核心
2009年第5期26-30,35,共6页
Journal of Kunming University of Science and Technology(Natural Science Edition)
基金
国家自然科学基金(项目编号:60573096)
陕西省自然科学基金项目(项目编号:2004f283)
西安市科技创新支撑-应用发展研究计划项目(项目编号:YF07024)
关键词
数据流
数据挖掘
数据流挖掘
频繁项集
data stream
data mining
data stream mining
frequent item -sets