期刊文献+

四维李代数的交叉模和三阶上同调群

Crossed modules and third cohomology of four dimensional Lie algebras
下载PDF
导出
摘要 根据Levi定理,四维不可解李代数L可以分解为它的半单纯子代数与根的半直和L0 S.结合李代数交叉模的定义,计算出四维不可解李代数的交叉模等价类只有一个,相应的三阶上同调群是平凡的.同时对四维可解李代数,讨论了导代数一维情形的交叉模等价类与三阶上同调群. According to Levi theorem,four dimensional unsolvable Lie algebras L can be decomposed as a semidirect sum L0S,where L0 is the semisimple subalgebra and S the radical of L.With the definition of crossed modules of Lie algebras,it is shown that there is only one equivalent class of crossed modules of four dimensional unsolvable Lie algebras,that the corresponding third cohomology is trivial.Then crossed modules and third cohomology of four dimensional solvable Lie algebras are discussed where its derivated algebra is one dimensional.
机构地区 滁州学院数学系
出处 《西安工程大学学报》 CAS 2009年第4期146-149,共4页 Journal of Xi’an Polytechnic University
基金 安徽高校省级自然科学研究资助项目(KJ2009B236Z KJ2008B248) 滁州学院科研资助项目(2008kj012B)
关键词 可解李代数 不可解李代数 交叉模 三阶上同调群 solvable Lie algebras unsolvable Lie algebras crossed modules third cohomology
  • 相关文献

参考文献6

  • 1WHITEHEAD J H C. Combinatorial homotopy II[J]. Bull Amer Math Soc, 1949,55:453-496.
  • 2LODAY J L. Cohomologie et group Steinberg relatifs [ J ]. J Algebra, 1978,54 ( 1 ) : 178-202.
  • 3HUEBSCHMANN J. Crossed n-fold extensions of groups and cohomology[ J]. Commment Math Helv, 1980,55 (2) :2 302- 2 313.
  • 4KASSEL C,LODAY J L. Extensions centrales d,alg'ebres de Lie[J]. Ann Inst Fourier:Grenoble,1982, 32(4) :119-142.
  • 5王圣祥,马先超.Virasoro代数的交叉模[J].西安工程大学学报,2008,22(4):510-512. 被引量:2
  • 6王圣祥,周建华.李代数的交叉模[J].东南大学学报(自然科学版),2009,39(1):185-190. 被引量:2

二级参考文献16

  • 1Kassel C,Loday J L. Extensions centrales d,alg'ebres de Lie[J]. Ann Inst Fourier (Grenoble), 1982, 32(4) :119-142.
  • 2Wagemann F. A crossed modules representing the Godbillon-Vey cocycle [J]. Letters in Mathematical Physics, 2000,51 (4) :293 - 299.
  • 3Wagemann F. On Lie algebra crossed modules [J ]. Comm Alg, 2006,34 (5) :1699 - 1722.
  • 4Zhang Hechun. A class of representative over the Virasoro algebras [J]. J Alg, 1997,190:1 - 10.
  • 5Rupet Wei Tze Yu. Algebras de Lie de type Witt [J]. Comm Alg, 1997,25(5) :1471 -1484.
  • 6[1]WHITEHEAD J H C.Combinatorial homotopy II[J].Bull Amer Math Soc,1949,55:453-496.
  • 7[2]KASSEL C,LODAY J L.Extensions centrales d,algebres de Lie[J].Ann Inst Fourier(Grenoble),1982,32(4):119-142.
  • 8[3]WAGEMANN F.A crossed modules representing the Godbillon-Vey cocycle[J].Letters in Mathematical Physics,2000,51:293-299.
  • 9[4]WAGEMANN F.On Lie algebra crossed modules[J].Comm Algebra,2006,34(5):1 699-1 722.
  • 10[7]ZHANG Hechun.A class of representative over the Virasoro algebras[J].J Alg,1997,190:1-10.

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部