摘要
根据Levi定理,四维不可解李代数L可以分解为它的半单纯子代数与根的半直和L0 S.结合李代数交叉模的定义,计算出四维不可解李代数的交叉模等价类只有一个,相应的三阶上同调群是平凡的.同时对四维可解李代数,讨论了导代数一维情形的交叉模等价类与三阶上同调群.
According to Levi theorem,four dimensional unsolvable Lie algebras L can be decomposed as a semidirect sum L0S,where L0 is the semisimple subalgebra and S the radical of L.With the definition of crossed modules of Lie algebras,it is shown that there is only one equivalent class of crossed modules of four dimensional unsolvable Lie algebras,that the corresponding third cohomology is trivial.Then crossed modules and third cohomology of four dimensional solvable Lie algebras are discussed where its derivated algebra is one dimensional.
出处
《西安工程大学学报》
CAS
2009年第4期146-149,共4页
Journal of Xi’an Polytechnic University
基金
安徽高校省级自然科学研究资助项目(KJ2009B236Z
KJ2008B248)
滁州学院科研资助项目(2008kj012B)
关键词
可解李代数
不可解李代数
交叉模
三阶上同调群
solvable Lie algebras
unsolvable Lie algebras
crossed modules
third cohomology