期刊文献+

基于数据场的SVM技术在雷暴预报中的应用 被引量:3

Application of SVM Technology Based on Data Field in Thunderstorm Report
下载PDF
导出
摘要 针对天气预报中样本不平衡造成漏报率高的问题,提出一种基于数据场的C加权支持向量机(SVM)技术。该技术对不平衡天气数据进行分类,采用叠加数据场势值作为数据重采样依据,筛选出最利于SVM分类器学习的样本作为训练样本,结合C加权方法进行训练。实验结果证明,在样本数量较多且不平衡性显著的雷暴天气中,该技术能缩减训练集规模,减少漏报,提升预报系统的g-means值。 Aiming at decreasing the rate of missing report caused by the imbalanced samples in weather report, this paper proposes a C weighted Support Vector Machine(SVM) technology based on data field. The technology classifies the imbalanced weather data, uses superimpose data filed potential value according as the data sample, the best samples for the SVM learning are filtered for training C weighted SVM. Experimental result proves that it can shrink the scale of training set, decrease the rate of missing report, boost the g-means in thunderstorm weather which has too many numbers of sample and prominent imbalanced property.
出处 《计算机工程》 CAS CSCD 北大核心 2009年第19期263-265,共3页 Computer Engineering
基金 国家自然科学基金委员会与中国民用航空总局联合基金资助项目(60672173)
关键词 支持向量机 数据场 不平衡数据集 雷暴预报 Support Vector Machine(SVM) data field imbalanced dataset thunderstorm report
  • 相关文献

参考文献4

二级参考文献10

共引文献130

同被引文献19

  • 1Cen Li. Classifying Imbalanced Data Using a Bagging EnsembleVariation(BEV)[C]//Proc. of the 45th ACM Annual Southeast Regional Conference. Winston-Salem, USA: ACM Press, 2007.
  • 2Zhu Xingquan. Lazy Bagging for Classifying Imbalanced Data[C]// Proc. of ICDM'07. Omaha, Nebraska, USA: IEEE ComputerSociety, 2007: 763-768.
  • 3Chawla N, Bowyer K, Hall L, et al. SMOTE: Synthetic Minority Over-sampling Technique[J]. Journal of Artificial IntelligenceResearch, 2002, 16(2): 321-357.
  • 4Breiman L. Bagging Predictors[J]. Machine Learning, 1996, 24(2): 123-140.
  • 5Chawla N V, Japkowicz N, Kolcz A. Editorial: Special Issue on Learning from Imbalanced Data Sets[J]. SIGKDD Explorations, 2004, 6(1): 1-6.
  • 6Foster P, Tom F. Robust Classification for Imprecise Environments[J]. Machine Learning, 2001, 42(3): 203- 231.
  • 7He Haibo, Edwardo A. Learning from Imbalanced Data[J].IEEE Transactions on Knowledge and Data Engineering, 2009, 21(9): 1263-1284.
  • 8Lin Chihjen. LIBSVM[EB/OL]. (2010-11-21). http://www. esie.ntu.edu.tw/-cj lin/libsvm/index.html.
  • 9马明,吕伟涛,张义军,孟青,杨晶.1997-2006年我国雷电灾情特征[J].应用气象学报,2008,19(4):393-400. 被引量:161
  • 10叶志飞,文益民,吕宝粮.不平衡分类问题研究综述[J].智能系统学报,2009,4(2):148-156. 被引量:72

引证文献3

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部