期刊文献+

Ba_(1.05)Ce_(0.8)Ho_(0.2)O_(3-α)的导电性及其燃料电池性能

The conductivity and the fuel cell performance of Ba_(1.05)Ce_(0.8)Ho_(0.2)O_(3-α)
下载PDF
导出
摘要 用高温固相反应法合成了非化学计量组成的Ba1.05Ce0.8Ho0.2O3-α固体电解质,用粉末X-射线衍射方法鉴定了其晶体结构。用交流阻抗谱技术研究了材料在600℃-1000℃下、湿润氢气和湿润空气气氛中的导电性,测定了其氢-空气燃料电池性能,并与BaCe0.8Ho0.2O3-α的电性能进行了比较。结果表明,Ba1.05Ce0.8Ho0.2O3-α材料为钙钛矿型斜方晶单相结构。在600℃-1000℃温度范围内、湿润氢气和湿润空气气氛中,该材料的电导率高于BaCe0.8Ho0.2O3-α的电导率(1000℃下,在湿润的氢气气氛中它们的电导率分别为2.66×10^-2和1.94×10^-2S·cm^-1;在湿润的空气气氛中分别为4.31×10^-2和1.93×10^-2S·cm-1);以该材料为固体电解质的氢-空气燃料电池性能优于以BaCe0.8Ho0.2O3-α为固体电解质的氢-空气燃料电池性能(1000℃下,它们的最大氢?空气燃料电池输出功率密度分别为139.8和85.8 mW·cm^-2)。 Ba1.05Ce0.8Ho0.2O3-α solid electrolyte with nonstoiehiometrie composition was synthesized by high temperature solid-state reaction. The crystal structure of the material was determined by XRD analysis. In the temperature range of 600℃ - 1000℃, the conductivity of Ba1.05 Ce0.8 Ho0.2 O3-α in wet hydrogen and wet air was measured by using ae impedance spectroscopy method, the performance of hydrogen-air fuel cell was studied, and compared them with those of BaCe0.8 Ho0.2O3-α. The results indieate that Ba1.05Ce0.8Ho0.2O3-α sinter is of single-phase structure of orthorhomhie perovskite. In the temperature range of 600℃-1000℃, Ba1.05Ce0:8Ho0.2O3-α has higher conduetivities in wet hydrogen and wet air and better performance of hydrogen-air fuel cell than BaCe0.8Ho0.2O3-α. At 1000℃ ,the conductivities of the two materials are 2.66 × 10^2 and 1.94 × 10^-2 S·cm^-1 in wet hydrogen,4.31 × 10^-2 and 1.93 ×10^-2 S · cm^-1 in wet air,and the maximum power output density of the two materials are 139.8 and 85.8 mW·cm^-2, respectively.
出处 《化学研究与应用》 CAS CSCD 北大核心 2009年第9期1260-1264,共5页 Chemical Research and Application
基金 江苏省高校自然科学基金资助项目(07KJB150126 08KJD150008)
关键词 Ba1.05Ce0.8Ho0.2O3-α 固体电解质 电导率 燃料电池 非化学计量组成 Ba1.05 Ce0.8 Ho0.2 O3-α solid electrolyte conductivity fuel cell nonstoiehiometr
  • 相关文献

参考文献6

二级参考文献51

  • 1陈威,王常珍,刘亮.测熔融铝合金中氢活度的传感法研究[J].金属学报,1995,31(7). 被引量:9
  • 2Iwahara H, Uchida H, Ono K, et al. Proton conduction in sintered oxides based on BaCeO3 [J]. J. Electrochem. Soc., 1988,135: 529.
  • 3Iwahara H, Esaka T, Uchida H, et al. Proton conduction in sintered oxides and its application to steam electrolysis for hydrogen production [J]. Solid State Ionics, 1981, 34: 359.
  • 4Ma Guilin, Shimura T, Iwahara H. Ionic conduction and nonstoichiometry in BaxCe0.90 Y0.10 O3-α [J ]. Solid State Ionics,1998, 110: 103.
  • 5Taniguchi N, Yasumoto E, Nakagiri Y, et al. Sensing properties of an oxygen sensor using BaCe0.8Gd0.2O3-α ceramics as electrolytes [J]. J. Electrochem. Soc., 1998, 145: 1774.
  • 6Iwahara H, Ushida H, Morimoto K. High temperature solid electrolyte fuel cells using perovskite-type oxide based on BaCeO3 [J]. J. Electrochem. Soc., 1990, 137: 462.
  • 7Iwahara H, Yajima T, Hibino T, et al. Performance of solid oxide fuel cell using proton and oxide ion mixed conductors based on BaCe1-xSmxO3-α[J]. J. Electrochem. Soc., 1993, 140(6) : 1687.
  • 8Iwahara H, Shimura T, Matsumoto H. Protonic conduction in oxides at elevated temperatures and their possible applications[J]. Electrochemistry., 2000, 68 (3): 154.
  • 9Ma Guilin, Matsumoto H, Iwahara H. Ionic conduction and nonstoichiometry in non-doped BaxCeO3-α[J]. Solid State Ionics, 1999, 122: 237.
  • 10Kreuer K D. Proton and oxygen diffusion in BaCeO3 based compounds: A combined thermal gravimetric analysis and conductivity study [J]. Solid State Ionics, 1997, 97. 1.

共引文献44

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部