摘要
A new wavelet-based finite element method is proposed for solving the Poisson equation. The wavelet bases of Hermite cubic splines on the interval are employed as the multi-scale interpolation basis in the finite element analysis. The lifting scheme of the wavelet-based finite element method is discussed in detail. For the orthogonal characteristics of the wavelet bases with respect to the given inner product, the corresponding multi-scale finite element equation can be decoupled across scales, totally or partially, and suited for nesting approximation. Numerical examples indicate that the proposed method has the higher efficiency and precision in solving the Poisson equation.
A new wavelet-based finite element method is proposed for solving the Poisson equation. The wavelet bases of Hermite cubic splines on the interval are employed as the multi-scale interpolation basis in the finite element analysis. The lifting scheme of the wavelet-based finite element method is discussed in detail. For the orthogonal characteristics of the wavelet bases with respect to the given inner product, the corresponding multi-scale finite element equation can be decoupled across scales, totally or partially, and suited for nesting approximation. Numerical examples indicate that the proposed method has the higher efficiency and precision in solving the Poisson equation.
基金
supported by the National Natural Science Foundation of China (Nos. 50805028 and 50875195)
the Open Foundation of the State Key Laboratory of Structural Analysis for In-dustrial Equipment (No. GZ0815)