期刊文献+

Numerical solution of Poisson equation with wavelet bases of Hermite cubic splines on the interval

Numerical solution of Poisson equation with wavelet bases of Hermite cubic splines on the interval
下载PDF
导出
摘要 A new wavelet-based finite element method is proposed for solving the Poisson equation. The wavelet bases of Hermite cubic splines on the interval are employed as the multi-scale interpolation basis in the finite element analysis. The lifting scheme of the wavelet-based finite element method is discussed in detail. For the orthogonal characteristics of the wavelet bases with respect to the given inner product, the corresponding multi-scale finite element equation can be decoupled across scales, totally or partially, and suited for nesting approximation. Numerical examples indicate that the proposed method has the higher efficiency and precision in solving the Poisson equation. A new wavelet-based finite element method is proposed for solving the Poisson equation. The wavelet bases of Hermite cubic splines on the interval are employed as the multi-scale interpolation basis in the finite element analysis. The lifting scheme of the wavelet-based finite element method is discussed in detail. For the orthogonal characteristics of the wavelet bases with respect to the given inner product, the corresponding multi-scale finite element equation can be decoupled across scales, totally or partially, and suited for nesting approximation. Numerical examples indicate that the proposed method has the higher efficiency and precision in solving the Poisson equation.
出处 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2009年第10期1325-1334,共10页 应用数学和力学(英文版)
基金 supported by the National Natural Science Foundation of China (Nos. 50805028 and 50875195) the Open Foundation of the State Key Laboratory of Structural Analysis for In-dustrial Equipment (No. GZ0815)
关键词 Poisson equation Hermite cubic spline wavelet lifting scheme waveletbased finite element method Poisson equation, Hermite cubic spline wavelet, lifting scheme, waveletbased finite element method
  • 相关文献

参考文献5

二级参考文献40

  • 1张新明,刘克安,刘家琦.流体饱和多孔隙介质二维弹性波方程正演模拟的小波有限元法[J].地球物理学报,2005,48(5):1156-1166. 被引量:27
  • 2周又和,第七届全国现代数学和力学会议文集,1997年,464页
  • 3Ko J,Proc 35th Structures Structural Dynamics and Materials Conference,1994年,665页
  • 4Daubechies Ingrid.Orthonormal bases of compactly supported wavelets[J].Comm Pure Appl Math,1988,41(7):909-996.
  • 5Mallat Stephane G.Multiresolution approximation and wavelet orthonormal bases of L2(R)[J].Trans Amer Math Soc,1989,315(1):69-87.
  • 6DING Xuan-zhou.Construction of real-valued wavelets symmetry[J].Journal of Approximation Theory,1995,81(3):323-331.
  • 7Strang G,Fix G J.An Analysis of the Element Mothod[M].New York:Academic Press,1973.
  • 8石钟慈.样条有限元.计算数学,1979,1(2):50-72.
  • 9Biot M A. Theory of propagation of elastic waves in a fluid-saturated porous solid: low-frequency range[J]. Acoustical Society of America, 1956,28(2): 168-178.
  • 10Biot M A. Theory of propagation of elastic waves in a fluid-saturated porous solid: higher-frequency range[J]. Acoustical Society of America, 1956,28(2) : 168-178.

共引文献29

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部