期刊文献+

时间测度上一类多点边值问题两正解的存在性

Existence of Positive Solutions for the Three-Point Boundary Value Problem on Time Scales
下载PDF
导出
摘要 利用Avery-Henderson Fixed Point Theorem不动点定理,得到了时间测度上一类非线性二阶多点边值问题存在至少2个正解的一个充分条件,并给出具体的实例以说明其应用. By applying Avery - Henderson fixed theorem, the research obtains one sufficient condition of the existence of at least two positive solutions to the nonlinear second - order multi - point boundary value problem on time scales, and several examples are given to show its application.
出处 《云南民族大学学报(自然科学版)》 CAS 2009年第4期292-297,共6页 Journal of Yunnan Minzu University:Natural Sciences Edition
基金 湖南省教育厅科学研究项目(07C389)
关键词 时间测度 边值问题 正解 不动点定理 time scale boundary value problem positive solution fixed theorem
  • 相关文献

参考文献6

  • 1HE Zhimin. Existence of Two Solutions of M - point Boundary Value Problem for Second Order Dynamic Equations on Time Scales[ J ]. Mathmatie Analysis and Applications ,2004,296 (1) :97 -109.
  • 2余建辉.二阶多点边值问题正解的存在性[J].福州大学学报(自然科学版),2002,30(4):438-441. 被引量:4
  • 3BOHNER M, GUSEINOV G, PETERSON A. Introduction to the Time Scales Calculus, Advances in Dynamic Equations on Time Scales [ M ] . Boston : Birkhanser,2003.
  • 4ATICI F M,GUSEINOV G S. On Green's Functions and Positive Solutions for Boundary Value Problems on Ttime Scales I J]. Comput Anal Math,2002,141:75 - 99.
  • 5张炳根.测度链上微分方程的进展[J].中国海洋大学学报(自然科学版),2004,34(5):907-912. 被引量:32
  • 6AVERY R, HENDERSON J. Two Positive Fixed Points of Nonlinear Operators on Ordered Banach Spaces [ J ]. Comm Appl Nonlinear Anal,2001,8( 1 ) :27 - 36.

二级参考文献38

  • 1郭大均.非线性泛函分析[M].济南:山东科技出版社,1985..
  • 2Hilger S.Analysis on measure chains_a unified approach to continuous and discrete calculus [J].Results Math,1990,18:18-56.
  • 3Kaymakcalan B,Lakshmikantham V,Sivasundaram S.Dynamic Systems on Measure Chains [M].Boston:Kluwer Academic Publishers,1996.
  • 4Martin Bohner,Allan Peterson.Dynamic Equations on Time Scales,An Introduction with Applications [M].Boston:Birkhauser,2001.
  • 5Agarwal R P,Bohner M,O'Regan D,et al.Dynamic equations on time scales:a survey [J].J Comput Appl Math,2002,141 (1-2):1-26.
  • 6Bohner M,Guseinov G,Peterson A.Introduction to the Time Scales Calculus,Advances in Dynamic Equations on Time Scales,1-15 [M].Boston M A:Birkhanser,2003.
  • 7Agarwal R P,Bohner M.Basic calculus on time scales and some of its applications [J].Results Math,1999,35:3-22.
  • 8Kaymakalan B,Lawrence B A.Coupled solutions and monotone iterative techniques for some nonlinear initial value problems on time scales.Nonlinear Analysis [J].Real World Appl,2003,2:245-259.
  • 9Zhang B G,Zhu shanliang.Oscillation of second order nonlinear delay dynamic equations on time scales [J].Compnters Math.Applic.to a appear.
  • 10Erbe L,Hilger S.Sturmian theory on measure chains [J].Differential Equations Dynam.Systems,1993,1:223-246.

共引文献34

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部