期刊文献+

基于分形的三维莲花模拟 被引量:3

3-D Lotus Flower Simulation Based on Fractal
下载PDF
导出
摘要 对莲花的三维逼真模拟进行了研究,经过观测,发现了花瓣间及花瓣结构的层与层之间具有统计自相似性,且花瓣数目依F ibonacc i序列分层排列.根据图形学原理和植物形态学原理,按照莲花的形态结构,提出了利用分形技术实现三维莲花的建模.并通过实验得到了三维莲花的IFS码和较为逼真的模拟结果. In order to achieve a more lifelike 3 - D lotus flower model, it is found through observation that there is statistic self- similarity between petals and layers in the multi -layer petal structure. At the same time, the petals are arranged according to Fibonacci order. Using computer graphics and plant morphological principle, the paper proposes the lotus flower modeling algorithm with the fractal technology according to different flower structures. Through computer experiments, IFS codes and the relatively vivid simulation of 3 - D lotus flower have been obtained.
出处 《云南民族大学学报(自然科学版)》 CAS 2009年第4期365-367,共3页 Journal of Yunnan Minzu University:Natural Sciences Edition
基金 四川省重点软科学项目(2006R-110)
关键词 分形 形态学 迭代函数系统 斐波那契序列 莲花 fractal morphology IFS Fibonacci order lotus flower
  • 相关文献

参考文献14

  • 1方舟子.植物花瓣[N/OL].科学探索,2006-12-22.
  • 2BAENSLEY M F. Fractal Functions and Interpolation[ J ]. Constructive Approximation. 1986 (2) :303 -329.
  • 3王良,曾兰玲.基于分形三维菊花建模算法[J].辽宁工程技术大学学报(自然科学版),2007,26(3):410-411. 被引量:5
  • 4李水根 吴纪桃.分形与小波[M].北京:科学出版社,2003..
  • 5B ARNSLEY M F. Fractals Everywhere[ M]. NewYork:Academic Press, 1993.
  • 6PRUSINKIEWICZ P, LINDEMAYER A. The Algorithmic Beauty of Plants [ M ]. NewYork : Spring - Verlag. 1990.
  • 7BARNSLEY M F,DEMKO S. Iterated Function Systems and the Global Construction of Fractals [ C ]//The Proceedings of the Royal Society of London, 1985, A399:243 - 275.
  • 8SLAWOMIR S. True - color Images and Iterated Function Systems [ J ]. Computer&Graphics, 1998,22 ( 5 ) :635 - 640.
  • 9HOLRON M. Strands, Gravity and Botanical Tree Imagery [ J ]. Computer Graphics Forum, 1994,13 (1) :57 -67.
  • 10MACDONALD N. Trees and Networks in Biological Models [ M ]. New York:John Wiley & Sons Ltd, 1983.

二级参考文献5

  • 1李水根 吴纪桃.分形与小波[M].北京:科学出版社,2003..
  • 2方舟子.植物花瓣[N/OL].科学探索,2004-09-12[2006-12-22]..http://tech.sina.com.cn/other/2004-09-03/1145418307.shtml.
  • 3Baensley M F.Fractal Functions and Interpolation[J].Constructive Approximation.1986 (2):303-329.
  • 4Baensley.Fractals Everywhere[M].New York:Academic Press,1993:45-76.
  • 5Prusinkiewicz P,Lindemayer A.The algorithmic beauty of plants[M].New York:Spring-Verlag.1990:68-79.

共引文献12

同被引文献21

引证文献3

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部