期刊文献+

短期负荷预测中SVM参数选取的混沌优化方法 被引量:8

Chaos Optimization Method of SVM Parameters Selection for Short-term Load Forecasting
下载PDF
导出
摘要 支持向量机已成功地应用于短期负荷预测领域,但其学习和泛化能力取决于参数的有效选取。为进一步提高预测精度,针对目前支持向量机参数选取方法的人为盲目性等缺点,在分析各个参数对其预测性能的影响的基础上,将混沌优化技术应用于参数的选取过程。对组合优化问题建立目标函数,采用一种改进的变尺度混沌优化算法来搜索全局最优值,从而得到最优的参数组合。通过湖南某地区电网日负荷预测的仿真结果表明,该方法与常规方法相比,显著地降低了模型的建模误差和预测误差,具有更好的性能。 The support vector machine(SVM) has been successfully applied in the short-term load forecasting area, but its learning and generalization ability depends on a proper setting of its parameters. In order to improve forecasting accuracy, aiming at the disadvantages like man-made blindness in the parameters selection of SVM, chaos optimization method is introduced to select parameters by analyzing the performances of different parameters that also have different influence. The objective function of the combination optimization problem is set and an improved mutative scale chaos optimization algorithm is employed to search global optimal value. Thereby the optimal parameters combination are obtained. Through the analysis of the daily forecasting results for a certain district in Hunan, it is shown that the proposed method could reduce modeling error and forecas- ting error of SVM model effectively and has better performance than general methods.
出处 《电力系统及其自动化学报》 CSCD 北大核心 2009年第5期124-128,共5页 Proceedings of the CSU-EPSA
关键词 短期负荷预测 支持向量机 参数选取 混沌优化算法 组合优化 short-term load forecasting support vector machines parameters selection chaos optimization al- gorithm combination optimization
  • 相关文献

参考文献8

二级参考文献55

  • 1陈柔伊,张尧,武志刚,陈泽淮.改进的模糊聚类算法在负荷预测中的应用[J].电力系统及其自动化学报,2005,17(3):73-77. 被引量:26
  • 2雷绍兰,孙才新,周湶,张晓星.电力短期负荷的多变量时间序列线性回归预测方法研究[J].中国电机工程学报,2006,26(2):25-29. 被引量:94
  • 3秦海超,王玮,周晖,王林.人体舒适度指数在短期电力负荷预测中的应用[J].电力系统及其自动化学报,2006,18(2):63-66. 被引量:36
  • 4赵宇红,肖金凤,陈忠泽.混合模糊神经网络在短期负荷预测中的应用[J].电力系统及其自动化学报,2006,18(2):99-104. 被引量:18
  • 5郝柏林.从抛物线谈起-混沌动力学引论[M].上海科技教育出版社,1995.1-20.
  • 6[1]T. Masters ,Neural,Novel& Hybird Algorithms for Tim Series Pre-diction[M], John Wiley & Sons. Inc., 1995.
  • 7[2]A. D. Papalexopoulos and T. C. Hesterberg , A regression based approach to short term system load forecasting[C], Proceedings of 1989 PICA Conference , 1989:414-423,
  • 8[3]K. L. Ho , Y. Y. Hsu , C. F. Chen , T. E. Lee , C. C. Liang , T . S. Lai , and K. K. Chen , Short term load foreasting of Taiwan power system using a knowledge-based expert system[J], IEEE Tans.on Power Systems , 1990,5(4):1214-1221.
  • 9[4]A.M. Lanchlan , An improved novelty criterion for resource allocating networks[C] , IEE ,Artifical Neural Networks , Conference Publication , 1997:440:48-52
  • 10[5]D.Srinivasan, S.S.Tan , C.S.Chang and E.K.Chan ,Practical im-plentation of a hybrid fuzzy neural network for one-day-ahead load forecasting[J], IEE Proc.-Gener. Transm,1998.11(6):687-692.

共引文献1106

同被引文献89

引证文献8

二级引证文献46

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部