期刊文献+

一类多值隐向量均衡问题解的存在性及稳定性 被引量:1

On the Existence and Stability of Implict Multi-valued Vector Equilibrium Problems
下载PDF
导出
摘要 在Hausdorff线性拓扑空间中引入和研究了一类多值隐向量平衡问题,通过运用Ky Fan截口定理,证明了其解的存在性,并进一步研究了一类扰动的多值隐向量平衡问题解集的闭性和上半连续性以及另一类扰动的平衡问题解集的下半连续性. Some implict multi-valued vector equilibrium problems in Hausdorff linear topologic spaces are introduced and studied in this paper. By using Ky Fan section theorem,some existence theorems of this problem are obtained. We also prove its solution set is a closed set,as well as establish the upper semieontinuity property of the solution set for perturbed implict multi-valued vector equilibrium problems and the lower semicontinuity property of the solution set for perturbed equilibrium problems.
出处 《西华师范大学学报(自然科学版)》 2009年第3期236-240,共5页 Journal of China West Normal University(Natural Sciences)
基金 四川省教育厅重点课题基金资助项目(07ZA123)
关键词 多值隐向量平衡问题 KY Fan截口定理 h-伪单调 上半连续 下半连续 implict multi-valued vector equilibrium problems Ky Fan section theorem h-pse-udomonotone upper semieontinuity lower semicontinuity.
  • 相关文献

参考文献3

二级参考文献26

  • 1俞建.对策论中的本质平衡[J].应用数学学报,1993,16(2):153-157. 被引量:21
  • 2Chen G Y and Hou S H.Existence of Solutions for Vector Variational Inequalities.Vector Variational Inequalities and Vector Equilibria Mathematical Theories,Ed.by F.Giannessi,Kluwer Academic Publishers,2000.73-86.
  • 3Fort M K Jr. Points of continuity of semicontinuous functions. Publ. Math. Debrecen , 1951, 2:100-102.
  • 4Beer G. On a generic optimization theorem of kenderov. Nonlinear Anal., 1988, 12: 647-655.
  • 5Klein E and Thomopson A. Theory of Correspondences. Wiley, New York, 1984.
  • 6Fan K. A generalization of Tychonoff's Fixed-Point theorem. Math. Ann., 1961, 142: 305-310.
  • 7Chen G Y. Existence of solutions for a vector variational inequality:an extension of the Hartmann-Stampacchia theorem. J. Opti. Theory Appl., 1992, 74: 445-456.
  • 8Engelking R. General Topology. Berlin: Heldermann Verlag, 1989.
  • 9Kinoshita S. On essential components of the set of fixed points. Osaka J. Math., 1952, 4: 19-22.
  • 10Yu J and Luo Q. On essential components of the solution set of generalized games. J. Math. Anal. Appl., 1999, 230: 303-310.

共引文献16

同被引文献23

  • 1Blum E and Oettli W. From optimization and variational inequalities to equilibrium problems. Math. Student, 1994, 63: 123-145.
  • 2Li J, Huang N J and Kim J K. On implicit vector equilibrium problems. J. Math. Anal. Appl., 2003, 283:501 512.
  • 3Huang N J, Li J and Thompson H B. Implicit vector equilibrium problems with applications. Math. Computer Model., 2003, 37: 1343-1356.
  • 4Khaliq A. Implicit vector quasi-equilibrium problems with applications to variational inequalities. Nonlinear Anal., 2005, 63: 1823-1831.
  • 5Chen X H. Existences of solution for the implicit multi-valued vector equilibrium problem. J. Appl. Math. Comput., 2009, 30: 469-478.
  • 6Alfredo N I, Gabor K and Wilfredo S. On certain conditions for the existence of solutions of equilibrium problems. Math. Prog., 2009, 116:259- 273.
  • 7Chen G Y, Huang X X and Yang X Q. Vector Optimization: Set-Valued and Variational Analysis. Springer-Verlag, Berlin, Heidelberg, 2005.
  • 8Chen G Y, Yang X Q and Yu H. A nonlinear scalarization function and generalized quasi-vector equilibrium problems. J. Global Optim., 2005, 32: 451-466.
  • 9Fang Y P and Huang N J. Vector equilibrium problems, minimal element problems and least element problems. Positivity, 2007, 11:251 268.
  • 10Fu J Y. Generalized vector quasi-equilibrium problems. Math. Meth. Oper. Res., 2000, 52: 57-64.

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部