期刊文献+

有限簇L-Lipschitzian映象的迭代程序

Iteration Process for a Finite Family of L-Lipschitzian Mappings
下载PDF
导出
摘要 设E是一实Banach空间,K是E的一非空闭凸子集.设f∶K→K是一压缩映象,T1,T2,…,TN∶K→K是具序列{kn}[1,+∞),limn→∞kn=1的有限簇一致L-Lipschitzian渐近伪压缩映象,且∩Ni=1F(Ti)≠Φ.设序列{xn}定义为xn+1=(1-αn-βn)xn+αnf(xn)+βnTnrnxn,其中{αn},{βn}[0,1],rn=nmodN是值域为{1,2,…,N}的模函数.在一定条件证明了迭代序列{xn}强收敛于T1,T2,…,TN的公共不动点.推广和改进了张石生等人的最新结果. Let E bean areal Banach space, K bean nonempty closed convexsubset of E. Let f: K→ K bean aractive mapping, ,T1,T2,…,TN:K→K be a finite family of uniformly L - Lipschitzian asymptotically docontractive mappings with sequence {κn}belong to [1,+∞),lim(n→∞) κn=1 such that the set ^N∩i=1F(Ti)≠Ф Let {xn} be the iterative sequence defined by n+1=(1-αn-βn)xn+αnf(xn)+βnT^n rn xn where{αn},{βn}belong to [0,1]and rn=n mod N,with the rood function takes values in the set {1,2,…,N} It is shown that under some suitable conditions, the iterafive sequence {xn}converges strongly to some fixedts of于T1,T2,…,TN. The resuits extend and improve some recent.
作者 赵良才
机构地区 宜宾学院数学系
出处 《宜宾学院学报》 2009年第6期1-3,共3页 Journal of Yibin University
基金 四川省青年科技基金资助项目(06ZQ026-013)
关键词 黏性逼近 一致L—Lipschitzian映象 渐近伪压缩映象 正规对偶映象 不动点 viscosity approximation uniformly L-Lipschitzian mapping asymptotically pseudocontrac -mapping normalized duality mapping fixed point
  • 相关文献

参考文献7

  • 1Geobel K, Kirk W A. A fixed point theorem for asymptotically nonexpansive mappings[J]. Prec. Amer. Math. Soc. ,1972;35:171-174.
  • 2Schu J. Iterative construction of fixed points of asymptotically nonexpansive mappings[J]. J. Math. Anal. Appl. ,1991,158 :407- 413.
  • 3Chang S S. Some results for asymptotically pseudocontractive mappings and asymptotically nonex - pansive mappings [ J ]. Proc. Amer. Math. Soc., 2000,129:845-853.
  • 4Ofoedu E U. Strong convergenoe theorem for uniformly L -Lipschitzian asymptotically pseudocontractive mapping in a real Banach spaces [J]. J. Math. Anal. Appl. ,2006,321:722-728.
  • 5Chang S S. Some problems and results in the study of nonlinear analysis[J]. Nonlinear Anal., 1997,30(7) :4197-4208.
  • 6Moore C, Nnoli. Iterative solution of nonlinear equations involving set - valued uniformly accretiveoperators [ J ]. Comput. Math. Appl., 2001,42:131-140.
  • 7Tan K K, Xu H K. The nonlinear ergodic theorem for asymptotically nonexpansive mappings[J]. ProcAmer Math Soc, 1992,114:399-404.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部