期刊文献+

Temperature Effects of Parabolic Linear Bound Potential and Coulomb Bound Potential Quantum Dot Qubit 被引量:2

Temperature Effects of Parabolic Linear Bound Potential and Coulomb Bound Potential Quantum Dot Qubit
下载PDF
导出
摘要 On the condition of electric-LO phonon strong coupling in a parabolic quantum dot,we obtain theeigenenergy and the eigenfunctions of the ground state and the first-excited state using the variational method ofPekar type.This system in a quantum dot may be employed as a two-level quantum system-qubit.When the electronis in the superposition state of the ground state and the first-excited state,we obtain the time evolution of the electrondensity.The relations of the probability density of electron on the temperature and the electron-LO-phonon couplingconstant and the relations of the period of oscillation on the temperature,the electron-LO-phonon coupling constant,the Coulomb binding parameter and the confinement length are derived.The results show that the probability densityof electron oscillates with a period when the electron is in the superposition state of the ground and the first-excitedstate,and show that there are different laws that the probability density of electron and the period of oscillation changewith the temperature and the electron-LO-phonon coupling constant when the temperature is lower or higher.Andit is obtained that the period of oscillation decreases with increasing the Coulomb bound potential and increases withincreasing the confinement length not only at lower temperatures but also at higher temperatures.
出处 《Communications in Theoretical Physics》 SCIE CAS CSCD 2009年第10期601-605,共5页 理论物理通讯(英文版)
基金 Supported by National Natural Science Foundation of China under Grant No.10747002 Research Funds from Qufu Normal University under Grant No.XJZ200839
关键词 quantum dot QUBIT Coulomb potential temperature effect 抛物量子点 电子温度 qubit 库仑 潜在危险 第一激发态 电子密度 LO声子
  • 相关文献

参考文献22

  • 1D. Deutsch, Proc. R. Soc. A 400 (1985) 97.
  • 2J.I. Cirac and P. Zoller, Phys. Rev. Lett. 74 (1995) 4091.
  • 3I.L. Chuang, N.A. Gershenfeld, and M. Kubinec, Phys. Rev. Lett. 80 (1998) 3408.
  • 4D. Cory, A. Fahmy, and T. Havel, Proc. Natl. Acad. Sci. USA 94 (1997) 1634.
  • 5Q.A. Turchette, C.J. Hood, W. Lange, H. Mabuchi, and H.J. Kimble, Phys. Rev. Lett. 75 (1995) 4710.
  • 6A. Ekert and R. Jozsa, Rev. Mod. Phys. 68 (1996) 733.
  • 7D. Loss and D.P. DiVincenzo, Phys. Rev. A 57 (1998) 120.
  • 8M.F. Bocko, A.M. Herr, and M.J. Feldman, IEEE Trans. Appl. Superconduct 7 (1997) 3638.
  • 9J.R. Friedman, V. Patel, W. Chen, S.K. Tolpygo, and J.E. Lukens, Nature (London) 406 (2000) 43.
  • 10D.V. Averin, Solid State Commun. 105 (1998) 659.

同被引文献14

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部