期刊文献+

Control of Codimension-2 Bautin Bifurcation in Chaotic Lü System 被引量:2

Control of Codimension-2 Bautin Bifurcation in Chaotic Lü System
下载PDF
导出
摘要 In this paper, we design a feedback controller, and analytically determine a control criterion so as to control the codimension-2 Bautin bifurcation in the chaotic Lfi system. According to the control criterion, we determine a potential Bautin bifurcation region (denoted by P) of the controlled system. This region contains the Bautin bifurcation region (denoted by Q) of the uncontrolled system as its proper subregion. The controlled system can exhibit Bautin bifurcation in P or its proper subregion provided the control gains are properly chosen. Particularly, we can control the appearance of Bautin bifurcation at any appointed point in the region P. Due to the relationship between Bantin bifurcation and Hopf bifurcation, the control scheme thereby is also viable for controlling the creation and stability of the Hopf bifurcation. In the controller, there are two terms: a linear term and a nonlinear cubic term. We show that the former determines the location of the Hopf bifurcation while the latter regulates its criticality. We also carry out numerical studies, and the simulation results confirm our analyticai predictions.
出处 《Communications in Theoretical Physics》 SCIE CAS CSCD 2009年第10期631-636,共6页 理论物理通讯(英文版)
基金 Supported by the National Nature Science Foundation of China (NSFC) under Grant No.60772023 Li-Xia Duan wishes to acknowledge the support from NSFC under Grant No.10872014
关键词 LU system bifurcation control Bautin bifurcation Hopf bifurcation Hopf分岔 反馈控制器 林业系统 余维 混沌 控制系统 控制增益 控制方案
  • 相关文献

参考文献24

  • 1J.H. Lu and G.R. Chen, Int. J. Bifur. Chaos 12 (2002) 659.
  • 2A. Vanecek S. Celikovske, Control Systems: From Linear Analysis to Synthesis of Chaos, Prentice-Hall, London (1996).
  • 3J.H. Lu, G.R. Chen, and S. Zhang, Int. J. Bifur. Chaos 12 (2002) 1001.
  • 4Y.G. Yu and S.C. Zhang, Chin. Phys. 11 (2002) 1249.
  • 5Y.G. Yu and S.C. Zhang, Chaos, Solitons and FractaJs 15 (2003) 897.
  • 6D.L. Chen, J.T. Sun, and Q.D. Wu, Chaos, Solitons and Fractals 21 (2004) 1135.
  • 7X.Q. Wu and J.A. Lu, Chaos, Solitons and Fractals 22 (2004) 375.
  • 8Y.P Zhang and J.T. Sun, Phys. Lett. A 342 (2005) 256.
  • 9L.L. Huang, R.P. Feng, and M. Wang, Phys. Lett. A 320 (2004) 271.
  • 10E.M. Elabbasy, H.N. Agiza, and M.M. E1-Dessoky, Chaos, Solitons and Fractals 21 (2004) 657.

同被引文献5

引证文献2

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部