期刊文献+

随机干扰下碰撞振动系统的动力学分析 被引量:11

Dynamic analysis of a vibro-impact system with random disturbance
下载PDF
导出
摘要 建立一类单自由度含间隙碰撞振动系统的动力学模型。推导了系统Poincar啨映射的解析表达式,用数值方法计算了系统的Lyapunov指数谱,讨论了随机干扰对碰撞振动系统的动力学影响。最后结合最大Lyapunov指数,讨论随机非光滑系统的随机分岔。数值研究表明随机非光滑系统同样存在着丰富的倍周期分岔现象,但和确定性系统的倍周期分岔现象存在本质的区别。 A one-degree-of-freedom vibro-impact system with clearance was established. The analytic expression of Poincar map of the system was derived,and the spectrum of Lyapunov exponents of the system was calculated numerically,the effects of the dynamic behavior of the vibro-impact system with random disturbance were analyzed. At last,with the largest Lyapunov exponent,the stochastic bifurcation of the random non-smooth system was studied. Numerical simulations showed that period-doubling bifurcation also exists in the random non-smooth system,but is different from that in the deterministic system.
出处 《振动与冲击》 EI CSCD 北大核心 2009年第9期163-167,共5页 Journal of Vibration and Shock
基金 国家自然科学基金资助项目(50675092) 甘肃省自然科学基金资助项目(0710RJZA052)
关键词 碰撞振动系统 随机分岔 LYAPUNOV指数 随机干扰 vibro-impact system stochastic bifurcation Lyapunov exponent random disturbance
  • 相关文献

参考文献17

  • 1Shaw S W,Holmes P J.Periodically forced linear oscillator with impact:chaos and long-period motions[J].Physical Review Letters,1983,51(8):623-626.
  • 2金栋平,胡海岩.碰撞振动及其典型现象[J].力学进展,1999,29(2):155-163. 被引量:34
  • 3Ding W C,Xie J H,Sun Q G.Interaction of Hopf and period doubling bifurcations of a vibro-impact system[J].Journal of Sound and Vibration,2004,275:27-45.
  • 4Ivanov A P.Stabilization of an impact oscillator near grazing incidence owing to resonance[J].Journal of Sound and Vibration,1993,162(3):562-565.
  • 5Xie J H,Ding W C.Hopf-Hopf bifurcation and T2 torus of a vibro-impact system[J].International Journal of Non-linear Mechanics,2005,40(4):531-543.
  • 6Silvio L T.de Souza,Iberê L.Caldas.Controlling chaotic orbits in mechanical systems with impacts[J].Chaos,Solitons and Fractals,2004,19:171-178.
  • 7张庆爽,丁旺才,孙闯.一类单自由度非光滑系统混沌运动的延迟反馈控制[J].振动与冲击,2008,27(1):155-158. 被引量:10
  • 8Jing H S,Sheu K C.Exact stationary solutions of the random response of a single-degree-of-freedom vibro-impact system[J].Journal of Sound and Vibration,1990,141(3):363-373.
  • 9Huang Z L,Liu Z H,Zhu W Q.Stationary response of multi-degree-of-freedom vibro-impact systems under white noise excitations[J].Journal of Sound and Vibration,2004,275:223-240.
  • 10Arnold L.Kliemann W.Qualitative theory of stochastic systems.Prob.Anal.and Relaled Topics.A.T.Bharucha-Reid eds.Academic Press.Lindon,1983(3):1-79.

二级参考文献72

共引文献166

同被引文献63

引证文献11

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部