摘要
广义逆矩阵的理论和方法在研究最小二乘问题,长方、病态线性、非线性问题,无约束、约束规划问题,控制论和系统识别问题,网络问题等等理论和应用领域是不可缺少的研究工具。本文探讨了多项式矩阵逆解线性齐次方程组的方法,而且以此引申探讨了多元多项式矩阵的分解问题。
The theory and methods of generalized inverse matrices are in dispensable studying tools in the least-square problems, the rectangular or ill-linear problems, the nonlinear problems, the non-constrained or constrained linear programming problems, control and identification of system problems, electronic net problems and so on. Through promoting matrix counter, this article simply introduced the multinomial matrix ,compared with the good and bad points of the two counter algorithms in different, illustrated the utilization of counter in solving homogeneous line good equation sets, and discussed the decomposition of the Multiple polynomial matrix.
出处
《襄樊职业技术学院学报》
2009年第5期24-27,共4页
Journal of Xiangfan Vocational and Technical College
关键词
矩阵的广义逆
多项式矩阵逆
线性齐次方程组
多元多项式矩阵
matrix generalized inverse
polynomial matrix inverse
linear homogeneous differential equation system
multiple polynomial matrix.