期刊文献+

具有最小Wiener指数的双圈图 被引量:3

Bicyclic Graphs with Minimum Wiener Index
下载PDF
导出
摘要 一个图G的Wiener指数W(G)定义为G中所有点对的距离和,双圈图是一个具有n个点和n+1条边的连通图,我们根据两个圈的相对位置关系把双圈图分成三类,分别在这三类中给出了最小的Wiener指数,然后通过比较三类极值的大小得到了双圈图中具有最小Wiener指数的图。 The Wiener index W(G) of a graph G is defined as the sum of distances over all pairs of vertices. Bicyclic graphis a connected simple graph n with n + 1 vertices and edges. According to the locational relation of the two cycles, we divide bicyelie graphs into three subsets, and their bicyclic graphs with minimum Wiener index in this subsets are given, respectively. By comparing the Wiener index of graphs with extremal value in those sets, we obtain bicyclic grahs with minimum Wiener index.
出处 《安庆师范学院学报(自然科学版)》 2009年第3期8-12,共5页 Journal of Anqing Teachers College(Natural Science Edition)
关键词 双圈图 WIENER指数 最小 bicydic graph, wiener index, minimum
  • 相关文献

参考文献11

  • 1H.Wiener.Structural determination of paraffin boiling point[J].J.Amer.Chem.Soc.,1947(69):17-20.
  • 2A.Dobrymin,R.Entringer and I.Gutman.Wiener index of trees:theory and application[J].Acta Appl.Math.,2001(66):211-249.
  • 3I.Gutman and J.H.Potgieter.Wiener index and intermolecular forces[J].J.Serb.Chem.Soc.,1997(62):185-192.
  • 4I.Gutman,Y.N.Yeh,S.L.Lee and Y.L.Luo.Some recent results in the theory of the Wiener number[J].Indian J.Chem.,1993(32A):651-661.
  • 5H.Q.Liu and M.Lu.A unified approach to extremal cacti for different indices[J].MATCH Commun.Math.Comput.Chem.,2007,58(1):183-194.
  • 6H.Q.Liu and X.F.Pan.On the Wiener index of Trees with Fixed Diameter[J].MATCH Commun.Math.Comput.Chem.,2008,60(1):85-94.
  • 7D.H.Rouvray.Should we have designs on topological indices?[J].In:R.B.King (ed.) Chemical Application of Topology and Graph Theory[J].Elsevier,Amsterdam,1983(28):159-177.
  • 8D.H.Rouvray.Predicting chemistry from topology[J].Sci.Amer.,1986,255(9):40-47.
  • 9D.H.Rouvray.The modelling of chemical phenomena using topological indices[J].J.Comput.Chem.,1987(8):470-480.
  • 10Z.K.Tang and H.Y.Deng.The (n,n)-graphs with the first three extremal Wiener indices[J].J.Math.Chem.,2008,43(1):60-74.

同被引文献18

  • 1Dobryin A A, Entringer R, Gutman I. Wiener index of trees : Theory and Application [ J ]. Acta Appl Math,2001,66 : 211 - 249.
  • 2Bondy A, Mmurty U S R. Graph Theory with Applications [ M ]. New York:Macmillan Press, 1976.
  • 3Gutman I. Selected Properties of the Schultz Molecular Topological Index[ J ]. J Chem Inf Comput Sci. , 1994,34:1087 - 1089.
  • 4H. D. Liu and M. Lu. A unified approach to extremal cacti for different indices[J]. Match Commun. Math. Comput. Chem. ,2007,58( 1 ) :183 - 194.
  • 5H. D. Liu and X. F. Pan. On the Wiener index of Trees with Fixed Diameter [ J ]. Match Commun. Math. Comput. Chem. ,2008,60 ( 1 ) :85 - 94.
  • 6Bondy A, Mmurty U S R. Graph Theory with Application [ M ]. New York: Macmillan Press, 1976.
  • 7Dobryin A A, Entringer R, Gutman I. Wiener index of trees: Theory and Application[J]. Acta Appl Math,2001 (66) :211 - 249.
  • 8K. Xu, K. C. Das. Extremal Unieyelie and Bieyelie Graphs with Respect to Harary Index [ J ]. Bull. Malays. Math. Sei. Soe ( 2 ), 2013,36(2) :373 -383.
  • 9K. Xu, N. Trinajstie. Hyper - Wiener and Harary indices of graphs with cut edges[J]. Util. Math. ,2011 (84) :153 -163.
  • 10G. Yu, L. Feng. On the maximal Harary index of a class of bi- eyelie graphs[J]. Util. Math. ,2010 (82) : 285 - 292.

引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部