期刊文献+

未标定图像序列的隐式曲面重建方法

Reconstruction of Implicit Surfaces from Uncalibrated Camera Image Sequences
下载PDF
导出
摘要 为了提高未标定图像序列三维重建得到的几何模型的质量,提出特征点检测算法,以得到更多的匹配点.其主要思想是在首帧图像指定密集的网格,在网格点附近确定最容易跟踪的特征点,利用迭代方法得到子像素精度的特征点坐标,然后用稀疏特征集的金字塔Lucas-Kanade光流跟踪算法跟踪这些特征点,再用自标定算法,重建出相对均匀和稠密的三维点云,最后利用基于径向基函数(RBF)的隐式曲面重建算法,生成目标的表面模型.多个图像序列的重建结果表明,本方法对纹理丰富的场景能够获得较好的重建结果. To improve the quality of 3D geometric models reconstructed from uncalibrated image sequences, a feature tracking algorithm was proposed to match more points among a sequence of images. In the algorithm, a dense grid in the first frame is drawn, and easily tracked feature points near the grid points are determined. The sub-pixel coordinates of the feature points are found by iteration. The optical flow for this sparse feature set is calculated using iterative Lucas-Kanade method in pyramids. An even and dense 3D point-cloud is reconstructed with a self-calibration algorithm. Finally, an RBF (radial basis function ) implicit surface reconstruction was applied to generate the surface .model of the object. By experimenting with a number of image sequences, the reconstruction results show that the algorithm can obtain satisfactory surfaces for images with rich texture.
出处 《西南交通大学学报》 EI CSCD 北大核心 2009年第5期677-681,687,共6页 Journal of Southwest Jiaotong University
基金 国家自然科学基金资助项目(60672099)
关键词 基于图像的建模 三维重建 RBF隐式曲面重建 特征检测与跟踪 image-based modeling 3D reconstruction RBF implicit surface reconstruction feature detection and tracking
  • 相关文献

参考文献14

  • 1SCHARSTEIN D, SZELISKI R. High-accuracy stereo depth maps using structured light[ C ]//Proceedings of the 2003 IEEE Conference on Computer Vision and Pattern Recognition. Madison: IEEE Press, 2003: 195-202.
  • 2张爱武,胡少兴,孙卫东,李风亭.基于激光与可见光同步数据的室外场景三维重建[J].电子学报,2005,33(5):810-815. 被引量:19
  • 3POLLEFEYS M, GOOL L V, VERGAUWEN M, et al. Visual modeling with a hand-held camera[ J]. International Journal of Computer Vision, 2004, 59 (3) : 207-232.
  • 4TAYLOR C J. Surface reconstruction from feature based stereo[C]// Proceedings of 9th International Conference on Computer Vision 2003. Nice: IEEE Press, 2003 : 184-190.
  • 5RODRIGUEZ T, STURM P, WILCZKOWIAK M, et al. VISIRE: photorealistic 3D reconstruction from video sequences [ C ] //Proceedings of IEEE International Conference on Image Processing. Barcelona: IEEE Press, 2003: 705-708.
  • 6GOESELE Michael, SNAVELY Noah, CURLESS Brian, et al. Multi-view stereo for community photo collections [ C ]// Proceedings of 11th IEEE International Conference on Computer Vision. Rio de Janeiro: IEEE Press, 2007: 14-20.
  • 7LHUILLIER M, QUAN L. A quasi-dense approach to surface reconstruction from uncalibrated images[ J]. IEEE Transaction on Pattern Analysis and Machine Intelligence, 2005, 27(3) : 418-433.
  • 8吴玲达,邓宝松,高宇,魏迎梅.基于近似相机内参数的精确三维欧氏重建算法[J].系统仿真学报,2007,19(10):2235-2240. 被引量:4
  • 9CARR J C, BEATSON R K, CHERRIE J B, et al. Reconstruction and representation of 3D objects with radial basis functions [ C ]//ACM Siggraph 2001. Los Angeles : Springer Press, 2001 : 67-76.
  • 10SHI J, TOMASI C. Good features to track [ C ] //Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Seattle : IEEE Press, 1994 : 593-600.

二级参考文献42

  • 1The AVENUE Project of Columbia University[DB/OL],http://www.cs.columbia.edu.cn/robotics/projects/avenue,2005-01-28.
  • 2The Digital Michelangelo Project[DB/OL].http://graphics.stanford.edu/projects/mich/,2004-08-15.
  • 3Visual Information Technology Group[C].Canada.http://www.vit.iit.nrc.ca/VIT.html,2002-02-10.
  • 4P J Besl,N D Mckay.A method for registration of 3-D shapes[J].IEEE Trans.PAMI,1992,14(2):239-256.
  • 5Y Chen,G Medioni.Object modeling by registration of multiple range image[J].Image and Vision Computing,1992,10(3):145-155.
  • 6A Johnson,S B Kang.Registration and integration of textured 3-d data[A].International Conf on Recent Advances in 3-D Digital Imaging and Modeling Proceedings[C].Ottawa,Ontario,Canada,1997.234-241.
  • 7K Nishino,K Ikeuchi.Robust simultaneous registration of multiple range images[A].In ACCV2002:The 5th Asian Conference on Computer Vision Proceedings[C].Japan,2002.454-461.
  • 8C V Stewart.Covariance-Based Registration[R].Department of Computer Science Technical Report RPI-CS-TR 02-8,Rensselaer Polytechnic Institute,June 2002.
  • 9Yizhou Yu,et al.Extracting objects from range and radiance images[J].IEEE Transactions on Visualization and Computer Graphics,2001,7(4):351-364.
  • 10Y Zhang,et al.Impact of intensity edge map on segmentation of noisy range images[A].Conference on Three-Dimensional Image Capture and Applications Ⅲ,Proceedings[C].San Jose,Ca:SPIE,2000.3958.260-269.

共引文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部