期刊文献+

基于网格截面法的非线性梁单元 被引量:3

Nonlinear Beam Element with Meshed Sections
下载PDF
导出
摘要 为准确描述材料进入非线性阶段后的应力状态,针对采用梁单元时框架结构材料非线性的有限元分析问题,提出了基于分布式塑性理论的三维材料非线性梁单元分析方法——网格截面梁单元法,并通过算例对其有效性和准确性进行了验证.这种方法采用平面等参单元将梁单元截面网格化,通过引入材料本构模型,由截面网格材料的应力-应变关系和应力分别积分得到梁单元的截面刚度矩阵和截面抗力,再通过位移插值函数计算梁单元在材料进入非线性阶段时的单元刚度矩阵和节点抗力. Based on the distributed plasticity approach, a new kind of beam element, 3-D materially nonlinear beam element with meshed sections, was presented to analyze the materially nonlinear behaviour of frame structures accurately, and a numerical example for the elasto-plastic analysis of a cantilever beam was given to illustrate the accuracy and efficiency of this approach. With this approach, beam sections are discretized into planar isoparametric elements at the integral points along the longitudinal direction of beam element, the stiffness matrices and resistant forces of sections are calculated by introducing the nonlinear stress-strain relations of materials and respectively integrating the stress-strain relations and stresses of sections, and the element stiffness and nodal resistant forces can also be evaluated with displacement interpolation functions when materials are in a nonlinear state.
出处 《西南交通大学学报》 EI CSCD 北大核心 2009年第5期726-731,共6页 Journal of Southwest Jiaotong University
关键词 有限元 Euler—Bernoulli梁 刚度法 网格截面梁单元 分布式塑性 弹塑性 finite element Euler-Beruoulli beam stiffness method beam element with meshed sections distributed plasticity elasto-plasticity
  • 相关文献

参考文献8

  • 1BATHE K J. Finite element procedure in engineering analysis [ M ]. Englewood Cliffs, New Jersey: Prentice-Hall, Inc. 1982 : 485-557.
  • 2CRISFIELD M A. Non-linear finite element analysis of solids and structures : Volume 1 [ M ]. New York : John Wiley & Sons, 1991: 152-197.
  • 3CHAN E C. Nonlinear geometric, material and time dependent analysis of reinforced concrete shells with edge beams [ D ]. Berkeley: Department of Civil Engineering, University of California, 1982.
  • 4MARIA R. Nonlinear geometric, material and time-dependent analysis of three dimensional reinforced concrete frames [ D ]. Berkeley: Department of Civil Engineering, University of California, 1984.
  • 5IZZUDDIN B A, ELNASHAI A S. Adaptive space frame analysis-Part Ⅱ: A distributed plasticity approach[ J]. Structures and Buildings Journal, 1993, 99 (3) : 317-326.
  • 6SPACONE E, FILIPPOU F C, TAUCER F F. Fiber beam-column model for non-linear analysis of R/C frames ( part Ⅰ) : Formulation [ J ]. Earthquake Engineering and Structural Dynamics, 1996, 25 (7) : 711-725.
  • 7SPACONE E, FILIPPOU F C, TAUCER F F. Fiber beam-column model for non-linear analysis of R/C frames ( part Ⅱ) : Applications [ J ]. Earthquake Engineering and Structural Dynamics, 1996, 25 (7) : 727-742.
  • 8LAM W F, MORLEY C T. Arc-length method for passing limit points in structural calculation [ J ]. Journal of Structural Engineering, 1992, 118(1): 169-185.

同被引文献27

  • 1周世军,朱晞.一组新的Timoshenko梁单元一致矩阵公式[J].兰州铁道学院学报,1994,13(2):1-7. 被引量:12
  • 2周凌远,李乔.基于UL法的CR列式三维梁单元计算方法[J].西南交通大学学报,2006,41(6):690-695. 被引量:20
  • 3RIKS E. An incremental approach to the solution of snapping and buckling problems [ J ]. International Journal of Solids and Structures, 1979, 15 ( 7 ) : 529- 551.
  • 4CRISFIELD M A. A fast incremental/iterative solution procedure that handles snap-through[J]. Computers and Structures, 1981, 13(1) : 55-62.
  • 5CRISFIELD M A. An arc-length method including line searches and accelerations[J]. International of Journal Numerical Methods in Engineering, 1983, 19 ( 9 ) : 1269-1289.
  • 6CRISFIELD M A. Non-linear finite element analysis of solids and structures, volume 1 : essentials [ M ]. Chiehester: John Wiley and Sons Ltd., 1991: 266- 275.
  • 7HELLWEG H B, CRISFIELD M A. A new arc-length method for handling sharp snap-backs[J]. Computers and Structures, 1998, 66(5): 704-709.
  • 8LAM W F, MORLEY C T. Arc-length method for passing limit points in structural calculation[ J]. Journal of Structural Engineering. 1992, 118(1) : 169-185.
  • 9ALFANO G, CRISFIELD M A. Solution strategies for the delamination analysis based on a combination of local control arc-length and line searches [ J ]. International of Journal Numerical Methods in Engineering, 2003, 58(7) : 999-1048.
  • 10MALLARDO, ALESSANDRI C. Arc-length procedures with BEM in physically nonlinear problems[ J]. Engineering Analysis with Boundary Elements, 2004, 28(6) : 547-559.

引证文献3

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部