期刊文献+

基于分形维数的柑橘形状与光滑度的机器视觉分级 被引量:7

Citrus Fruits Grading by Shape and Smoothness Based on Machine Vision and Fractal Dimension
下载PDF
导出
摘要 为了实现柑橘形状与果皮光滑度的自动分级,研究了柑橘分形维数与柑橘形状和果皮光滑度间的对应关系.对机器视觉系统采集的柑橘花萼面和侧面的图像设置蓝色分量阈值去除背景后,经图像二值化、四连通化边界跟踪和边界细化操作,提取柑橘边界周长和柑橘区域面积,利用周长-面积方法计算柑橘分形维数,以此度量柑橘形状和果皮光滑度.3组仿形样本的分析表明,分形维数随形状和表面光滑度的变化而变化,说明分形维数既概括了柑橘外部形状特征,同时又包含了果皮光滑度信息.用10个柑橘检验样本的分形维数评定柑橘等级,其结果与人工感官判断结果完全吻合,这表明:分形维数能对柑橘形状和果皮光滑度进行分级. The relation of fractal dimension to fruit shape and pericarp smoothness are investigated to achieve auto grading of citrus fruits. After fruit calyx and profile image backgrounds are removed with threshold values, these images are converted to binary images. With boundary tracing and thinning, the perimeter and area of fruit region in the image are obtained to calculate the fractal dimension of the citrus fruit, and to determine fruit shape and smoothness of pericarp. Test results of 3 profile modeling groups show that the fractal dimension varies with fruit shape and smoothness, which implies the fractal dimension contains the information of fruit shape and pericarp smoothness. Ten samples were graded with fractal dimension, and the grading results were consistent with that of manual work.
出处 《测试技术学报》 2009年第5期407-411,共5页 Journal of Test and Measurement Technology
基金 湖南省自然科学基金资助项目(2007JJ6129) 湖南省农业厅重点课题资助项目(200704A) 湖南省教育厅科学研究项目(06D059)
关键词 分形维数 机器视觉 柑橘 形状与光滑度 分级 fractal dimension machine vision citrus fruit shape and smoothness grading
  • 相关文献

参考文献8

  • 1Blasco J, Aleixos N, Molto E. Machine vision system for automatic quality grading of fruit [J]. Biosystems Engineering, 2003, 85(4): 415-423.
  • 2Njoroge, J B, Ninomiya K, Kondo N, et al. Automated fruit grading system using image processing[C]. SICE 2002. Proceedings of the 41st SICE Annual Conference, 5-7 Aug. 2002, On page(s): 1346-1351.
  • 3Meftah S M A, Abdul R M S, Helmi Z M S, et al. Oil palm fruit bunch grading system using red, green and blue digital number[J]. Journal of Applied Sciences, 2008, 8(8): 1444-1452.
  • 4Artur Z, Ludmyla F, Krystyna K, et al. Comparision of puncture test, acoustic emission and spatial-temporal speckle correlation technique as methods for apple quality evaluation[J]. Acta Agrophysica, 2008, 11 (1) : 303-315.
  • 5Abdullah M Z, Mohamad S J, Fathinul S A S, et al. Discrimination and classification of fresh-cut starfruits (Averrhoa carambola L. ) using automated machine vision system[J]. Journal of Food Engineering, 2006, 76: 506- 523.
  • 6林开颜,吴军辉,徐立鸿.基于计算机视觉技术的水果形状分级方法[J].农业机械学报,2005,36(6):71-74. 被引量:46
  • 7蔡健荣,许月明.基于主动形状模型的苹果果形分级研究[J].农业工程学报,2006,22(6):123-126. 被引量:21
  • 8应义斌,桂江生,饶秀勤.基于Zernike矩的水果形状分类[J].江苏大学学报(自然科学版),2007,28(1):1-3. 被引量:30

二级参考文献24

共引文献81

同被引文献80

引证文献7

二级引证文献42

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部