期刊文献+

提高分辨率的带宽外推SAR成像算法 被引量:2

A Bandwidth Extrapolation Method for Improving SAR Image Resolution
下载PDF
导出
摘要 分析了合成孔径雷达(SAR)的图像信号模型,阐述了应用数据外推方法提高分辨率的可行性.提出一种最小方差谱估计和最小加权范数约束结合的非参数类数据外推方法.该方法外推SAR相位历史域信号有效带宽可得到较好的成像效果.仿真和实测数据处理证明了此方法的有效性,并给出了定量比较与分析. The image signal model of synthetic aperture radar (SAR) is analyzed, and the feasibility using the data extrapolation method to improve the SAR image resolution is illustrated. The paper proposes a nonparameter data extrapolation method based on minimum variance spectrum estimation and minimum weighted norm constraint. The method extrapolates the efficient bandwidth in phase history field to obtain the better imaging result. Simulation and the practical test data proved effectivity of the method, and the quantitative comparison is given.
作者 张平 杨汝良
出处 《测试技术学报》 2009年第5期457-461,共5页 Journal of Test and Measurement Technology
关键词 合成孔径雷达 超分辨率 谱外推 最小方差谱估计 最小加权范数 synthetic aperture radar (SAR) superresolution spectra extrapolation minimum variance spectrum estimation minimum weighted norm
  • 相关文献

参考文献8

  • 1DeGraaf S R. SAR imaging via modern 2-D spectral estimation methods[J]. IEEE Transactions on Image Processing, 1998, 7(5): 729-761.
  • 2李斌,慈林林,万建伟,姚康泽,王岩.提高ISAR分辨率的两种外推方法性能之比较[J].雷达科学与技术,2006,4(6):358-362. 被引量:5
  • 3许人灿,刘朝军,黄小红,陈曾平.基于超分辨ISAR成像的空中目标自动识别[J].系统工程与电子技术,2006,28(1):46-48. 被引量:10
  • 4Suwa K, Iwamoto M. A two-dimensional bandwidth extrapolation technique for polarimetric synthetic aperture radar images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2007, 45(1): 45-54.
  • 5Sergio D Cabrera. Extrapolation and spectral estimation with iterative weighted norm modification [J]. IEEE Transactions on Signal Processing, 1991, 39(4): 842-851.
  • 6Alejandro E Brito. SAR Image Formation Using 2-D Re-Weighted Minimum Norm Extrapolation[C]. Part of the SPIE Conference on Algorithms for Synthetic Aperture Radar Imagery Ⅵ, Orlando, Florida, April 1999: 78-91.
  • 7Lee C Potter, Arun K S. Energy concentration in band-limited extrapolation[J]. IEEE Trans on Acoustics Speech and Signal Processing, 1989, 37(7): 1027-1041.
  • 8Kay S M. Modern Spectral Estimation: Theory and Application[M]. New Jersey: Prentice Hall, 1988.

二级参考文献5

  • 1许人灿,姜卫东,陈曾平.基于最大熵谱估计的距离-多普勒成像[J].现代雷达,2005,27(5):22-24. 被引量:5
  • 2KHOTANZAD A,LU J H.Classification of invariant image representations using a neual net[J].IEEE Trans.on Acoustics,Speech and Signal Processing,1990,38(7):1028-1038.
  • 3BALLARD D H,BROWN C M.Computer vision,Englewood Cliffs[M].New Jersey:Prentice Hall,1982.
  • 4BOTHA E C.Classification of aerospace targets using superresolution ISAR images[J].IEEE Traos.on Acoustics,Speech and Signal Processing,1994,42.
  • 5CHEN S,COWAN C F N,GRANT P M.Orthogonal least squares learning algorithm for radial basis F unction networks[J].IEEE Trans.on Neural Networks,1991,2(2).

共引文献13

同被引文献28

  • 1NI Chong1,2,WANG YanFei1,XU XiangHui1,ZHOU ChangYi1 & CUI PengFei1,2 1 Institute of Electronics,Chinese Academy of Sciences,Beijing 100190,China,2 Graduate University of Chinese Academy of Sciences,Beijing 100039,China.A SAR sidelobe suppression algorithm based on modified spatially variant apodization[J].Science China(Technological Sciences),2010,53(9):2542-2551. 被引量:6
  • 2许人灿,姜卫东,陈曾平.基于最大熵谱估计的距离-多普勒成像[J].现代雷达,2005,27(5):22-24. 被引量:5
  • 3李斌,慈林林,万建伟,姚康泽,王岩.提高ISAR分辨率的两种外推方法性能之比较[J].雷达科学与技术,2006,4(6):358-362. 被引量:5
  • 4Herbert C. Stankwitz,Rodney J. Dallaire,James R. Fienup.Non-linear apodization for sidelobe control in SAR imagery. IEEE Transactions on Aerospace and Electronic Systems . 1995
  • 5Carlos Castillo-Rubio,Sergio Llorente-Romano,Mateo Burgos-Garcia.Robust SVA method for every sampling rate condition. IEEE Transactions on Aerospace and Electronic Systems . 2007
  • 6Krzysztof Kulpa,Jacek Misiurewicz,Piotr Samczynski, et al.SAR image enhancement by dominant scatterer removal. IET International Conference on Radar Systems . 2007
  • 7Zhao Gaopeng,Bo Yuming,Lv Ming.Dim small target detection method based on nonsubsampled contourlet transform in infrared image. Chinese Conference on Pattern Recognition . 2009
  • 8THOMAS G,FLORES B C,JAE S-S.SAR sidelobe ap-odization using the Kaiser window. Proceedings ofthe IEEE International Conference on Image Processing . 2000
  • 9Stankwitz H C,Dallaire R J,Fienup J R.Spatially variant apodization for sidelobe control in SAR imagery. Record of the 1994 IEEE National Radar Conference . 1994
  • 10Otsu N.A threshold selection method form gray-level histograms. IEEE Transactions on Systems Man and Cybernetics . 1979

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部