期刊文献+

磁场对高超声速弱电离气体流动的影响 被引量:6

Effect of Magnetic Field on Hypersonic Weakly Ionized Gas Flow
原文传递
导出
摘要 对偶极子磁场作用下的三维钝头体高超声速黏性绕流的化学非平衡流动进行了数值模拟。电导率利用组分公式计算,化学模型为7组元、6反应模型。应用诱导磁场方法将磁场与流场耦合,控制方程的空间离散采用有限体积法,扩散项用中心差分格式,对流项采用二阶迎风格式,时间推进采用3步Runge-Kutta法。计算结果表明,外加偶极子磁场使激波脱体距离增加,壁面摩擦系数和表面热流密度增大。与无磁场作用时相比,在0.153T外加磁场作用下,冻结流中的激波脱体距离增加约3倍,局部壁面摩擦系数最大增加63%,局部表面热流密度最大增加61%;而化学非平衡流中的激波脱体距离增加约0.5倍,局部壁面摩擦系数最大增加47%,局部表面热流密度最大增加31%,且化学非平衡流中激波层内温度的最大值约为冻结流中的64%。 Three dimensional hypersonic viscous chemical nonequilibrium flows around a blunt body under the effect of a dipole magnetic field are numerically investigated.The electrical conductivity is calculated by a species formula,with the chemical kinetics described by 7 species and 6 reactions between them.The magnetic field and the flow field are coupled by the magnetic induction equation.The finite volume method is implemented in the spatial discretization.Central difference approximation is applied to the diffusion terms while a second order upwind scheme is used for the convection terms, and a 3-stage Runge-Kutta scheme is adopted for the time integration. The results show that the shock standoff distance, skin friction coefficient and surface heat flux all increase with the strengthening of the external dipole magnetic field. When external magnetic field is 0. 153 T, the shock standoff distance, local skin friction coefficient and local surface heat flux in the frozen flow increase respectively by three times, 63% and 61%, while in the chemical nonequilibrium flow, the shock standoff distance, local skin friction coefficient and local surface heat flux increase by 50 %, 47% and 31%, respectively, as compared with the figures without the effect of the magnetic field. Meanwhile, the maximal temperature of the shock layer in the chemical nonequilibrium flow is 64 % of that in the frozen flow when external magnetic field is 0. 153 T.
出处 《航空学报》 EI CAS CSCD 北大核心 2009年第10期1834-1839,共6页 Acta Aeronautica et Astronautica Sinica
基金 航空科学基金(20071452012)
关键词 航空航天推进系统 化学非平衡 数值模拟 磁场 高超声速 激波脱体距离 电导率 aerospace propulsion system chemical nonequilibrium numerical simulation magnetic fields hypersonic shock standoff distance electrical conductivity
  • 相关文献

参考文献12

  • 1Damevin H M, Hoffmann K A. Numerical simulations of hypersonic magnetogasdynamics flows over blunt bodies [R]. AIAA-2002-0201, 2002.
  • 2Poggie J, Gaitonde D V. Computational studies of magnetic control in hypersonic flow[R]. AIAA-2001- 0196, 2001.
  • 3Khan O U, Hoffmann K A, Dietiker J F. Numerical study of magnetogasdynamic high speed flows over blunt bodies [R]. AIAA-2006 -966, 2006.
  • 4MacCormack R W. Aerodynamic flow calculations with strong magnetic induction and diffusion[R]. AIAA-2005- 0559, 2005.
  • 5Hoffmann K A, Damevin H M. Numerical magnetogasdynamics simulations of hypersonic chemically reacting flows [R]. AIAA-2001-2746, 2001.
  • 6黄护林,韩东.3D MHD Jet in a Non-Uniform Magnetic Field[J].Plasma Science and Technology,2005,7(6):3092-3096. 被引量:1
  • 7Pan Y, Wang J F, Wu Y Z. Upwind scheme for ideal 2-D MHD flows based on unstructured mesh[J]. Transactions of Naniing University of Aeronautics & Astronautics, 2007, 24(1): 1-7.
  • 8Candler G V, MacCormack R W. The computation of hypersonic ionized flows in chemical and thermal nonequilibrium[R]. AIAA-1988 -0511, 1988.
  • 9Gupta R N, Yos J M, Thompson R A. A review of reaction rates and thermodynamic and transport properties for an 11 species air model for chemical and thermal nonequilibrium calculation to 30000K [ R]. NASA TM-101528, 1990.
  • 10Prasanta D, Agarwal R K. A performance study of MHr> bypass scramjet inlets with chemical non-equilibrium[R]. AIAA -2001-2872, 2001.

二级参考文献15

  • 1Asare H R, Owusu A A, Mensah M F, et al. Journal of Fluid Engineering, 1981, 103:595 - 605.
  • 2Ievlev V M, Turaeva T L, Latvshev A N. The Effect of A uniform Magnetic Field on Stability, Transition and Turbulence as a Control Means for Liquid Metal Flow Mixing,Liquid Metal Magnetohydnamics,J. Lielpeteris and Moreau (eds.), London: Kluwer Academic Publishers, 1989, 161-167.
  • 3Davidson P A. J. Fluid Mechanics, 1995, 29:153-185.
  • 4Kotschenreuther M. The effects of surface normal magnetic fields on concepts for fast surface flows of liquid metals, including toroidal breaks. APEX Memorandum, UCLA, Los Angeles, USA, March 16, 2001.
  • 5Walker J S, Ludford G S S, Hunt J C R. J. Fluid Mech., 1972, 56:121-141.
  • 6Potherat A, Sommeria J, Moreau R. J. Fluid Mech.,2000, 424:75-100.
  • 7Hirt C W, Nichols B D. J. Comp. Phys., 1981, 39:201-225.
  • 8Puckett E G, Almgren A S, Bell J B, et al. J Journal of Computational Physics, 1997, 130:269-282.
  • 9Ginzburg I, Wittum G. Journal of Computational Physics, 2001, 166:302-335.
  • 10Salah N B, Soulaimani A, Habashi W G. A. Comput.Methods Appl. Mech. Engrg., 2001, 190:5867-5892.

同被引文献67

引证文献6

二级引证文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部