期刊文献+

超声速气流中受热壁板的二次失稳型颤振 被引量:4

Secondary Instability Flutter of Heated Panels in Supersonic Airflow
原文传递
导出
摘要 研究了超声速气流中受热壁板的非线性气动弹性响应,发现了一种新的动态失稳现象——二次失稳型颤振。基于von Karman非线性应变-位移关系、Reissner-Mindlin板理论和一阶活塞理论建立超声速气流中三维壁板的有限元模型。通过数值算例,研究了超声速气流中受热壁板发生二次失稳型颤振的条件,并运用非线性振动理论分析了二次失稳型颤振的机理。研究表明,超声速气流中受热壁板在平衡态的稳定性未发生变化时,也会因系统参数的变化引起气动弹性响应性质的突变,导致壁板的二次失稳型颤振。二次失稳型颤振能否发生不仅受到气流速压和壁板温升的影响,而且还与初始扰动有关。当扰动引起壁板的初始变形较小时,不能激发出二次失稳型颤振,壁板的气动弹性响应最终收敛到屈曲平衡态。应用二次失稳型颤振理论和分析方法,确定了前人给出的一个金属壁板模型的热颤振边界的风洞试验结果,而且计算结果与试验结果符合良好,从而对这一壁板热颤振现象的风洞试验结果作出了较合理的理论解释。 A new dynamic instability phenomenon-secondary instability flutter-is found in the study of nonlinear aeroelastic response of heated panels in supersonic flow.According to the von Karman nonlinear strain-deflection relationship,the Reissner-Mindlin plate theory,and the first order piston theory,a finite element model for the aeroelastic analysis of a heated panel in supersonic airflow is established.The nonlinear aeroelastic response of the panel is calculated numerically.The mechanism of the secondary instability flutter is not due to Hopf bifurcation, but should be interpreted by the catastrophe theory. It is also found that secondary instability flutter will not occur when the perturbed initial deflection of the panel is not large enough, and that it is affected by the initial deflection as well as the aerodynamic pressure and the temperature elevation of the panel. By applying the secondary instability flutter theory and analytical method, the flutter boundary for an aluminum panel which has been tested in a wind tunnel by other researchers is determined. The results agree well with those obtained in the wind tunnel tests. It can be concluded that the proposed secondary instability flutter theory can provide good explanation to the post-buckling thermal flutter of heated panel.
出处 《航空学报》 EI CAS CSCD 北大核心 2009年第10期1851-1856,共6页 Acta Aeronautica et Astronautica Sinica
基金 国家自然科学基金(10672135) 教育部"新世纪优秀人才支持计划"(NCET-04-0965)
关键词 壁板颤振 屈曲 热颤振 几何非线性 突变 panel flutter buckling thermal flutter geometric nonlinearity catastrophe
  • 相关文献

参考文献12

  • 1Mei C, Abdel Motagaly K, Chen R. Review of nonlinear panel flutter at supersonic and hypersonic speeds[J]. Applied Mechanics Reviews, 1999, 52(10): 321-332.
  • 2Dowell E H. Panel flutter: a review of the aeroelastic stability of plates and shells[J]. AIAA Journal, 1970, 8(3) : 385-399.
  • 3夏巍,杨智春.超音速气流中受热壁板的稳定性分析[J].力学学报,2007,39(5):602-609. 被引量:21
  • 4BolotinVV 著 陆启韶 王士敏 译.结构力学的动态不稳定性.力学进展,2000,30(2):295-304.
  • 5任勇生,刘立厚,韩景龙,向锦武.飞行器非线性气动弹性和颤振主动控制研究进展[J].力学季刊,2003,24(4):534-540. 被引量:15
  • 6张云峰,刘占生.粘弹壁板颤振的非线性动力特性[J].推进技术,2007,28(1):103-107. 被引量:8
  • 7Cheng G F, Mei C. Finite element modal formulation for hypersonic panel flutter analysis with thermal effects[J]. AIAA Journal, 2004, 42(4): 687-695.
  • 8Epureanu B I, Tang L S, Paidoussis M P. Coherent struc tures and their influence on the dynamics of aeroelastie panels[J]. International Journal of Non-Linear Mecha nics, 2004, 39(6): 977-991.
  • 9Beloiu D M, Ibrahim R A, Pettit C L. Influence of boundary conditions relaxation on panel flutter with compressive in plane loads[J]. Journal of Fluids and Structures, 2005, 21(8) : 743-767.
  • 10Haddadpour H, Navazi H M, Shadmehri F. Nonlinear oscillations of a fluttering functionally graded plate[J]. Composite Structures, 2007, 79(2): 242-250.

二级参考文献73

  • 1张伟伟,叶正寅.基于当地流活塞理论的气动弹性计算方法研究[J].力学学报,2005,37(5):632-639. 被引量:35
  • 2胡海岩.力学系统混沌的主动控制[J].力学进展,1996,26(4):453-463. 被引量:32
  • 3陶宝琪.智能材料结构[M].北京:国防工业出版社,1997..
  • 4Farhat C,Lesoinne M. Two efficient staggered algorithms for the serial and parallel solution of three-dimensional nonlinear transient aeroelastic problems[J]. Comput Methods Appl Mech Engrg, 2000,182 : 499-515.
  • 5Borland C J. XTRANS3S— transonic steady and unsteady aerodynamics for aeroelastic applications[J]. AFWAL TR-85-3146,1986.
  • 6Batina J T, Seidel D A, Bland S R,et ah Unsteady transonic flow calculations for realistic aircraft configurations[J]. J Aircraft, 1989,28,131-139.
  • 7Guruswamy G P. ENSAERO— a mulfidisciplinary program for fluid/structural interaction studies of aerospace vehlcles[J]. Comput Syst Engng, 1990,1 : 237-256.
  • 8Goland M. The flutter of a uniform cantilever wing[J]. J Applied Mechanics, 1945,12(4) :A197-A208.
  • 9Beauchamp C H, Nadolink R H, Dean L M. Shape memory alloy articulated control surfaces[C]. ADPA/AIAA/ASME/SPIE Conf on Active Material and Adaptive Structures, 1992, Session 25: 455-460.
  • 10Beauchamp C H, Nadolink R H, Dean L M,et al. Shape memory alloy adiustable camber control surfaces[C]. 1st European Conf on smart structures and materials, Glasgow ,1992 , Session 5:189-196.

共引文献40

同被引文献39

  • 1吴志刚,惠俊鹏,杨超.高超声速下翼面的热颤振工程分析[J].北京航空航天大学学报,2005,31(3):270-273. 被引量:44
  • 2刘先斌,陈虬,陈大鹏.非线性随机动力系统的稳定性和分岔研究[J].力学进展,1996,26(4):437-452. 被引量:30
  • 3李道春,向锦武.迟滞非线性二元机翼颤振特性分析[J].航空学报,2007,28(3):600-604. 被引量:18
  • 4Liepman H W.On the application of statistical concepts to the buffeting problem[J].Journal of Aeronautical Science,1952,19(2):793-800.
  • 5Lin Y K.Probability theory of structural dynamics[M].Columbus,OH:McGraw-Hill,1967.
  • 6DavenPort A C.The application of statistical concepts to the wind loading of structures[C] //Proceedings Institution of Civil Engineers.1961,9:499.
  • 7Liu X B,Liew K M.Maximal Lyapunov exponent of a co-dimension two bifurcation system excited by a white noise[J].International Journal of Non-Linear Mechanics,2005,40(5):653-668.
  • 8Yang Z C,Zhao L C.Analysis of limit cycle flutter of an airfoil in incompressible flow[J].Journal of Sound and Vibration,1988,123(1):1-13.
  • 9Ariaratnem S T,Abdelrahman N M.Almost-sure stochastic stability of viscoelastic plates in supersonic flow[J].AIAA Journal,2001,39(3):465-472.
  • 10Ibrahim R A,Beloiu D M.Influence of joint relaxation on deterministic and stochastic panel flutter[J].AIAA Journal,2005,43(7):1444-1454.

引证文献4

二级引证文献34

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部