期刊文献+

基于单学科可行法的多学科可靠性设计优化 被引量:10

Individual Disciplinary Feasible Method for Reliability Based Multidisciplinary Design Optimization
原文传递
导出
摘要 近年来对多学科系统中不确定性的研究逐渐增多。针对该问题的计算复杂性,利用序列优化及可靠性评估(SORA)框架,提出用单学科可行(IDF)方法来求解多学科可靠性设计优化(RBMDO)问题。此方法将可靠性分析和多学科设计优化分离开来,分为确定性多学科设计优化和可靠性分析两个问题顺序执行,以提高计算效率。可靠性分析和优化的过程都采用多学科设计优化中高效的方法——IDF方法。最后通过例子验证此方法的有效性,算例结果表明,采用基于IDF的方法,学科1和学科2所用的函数计算次数分别减少了28.9%和25.0%。 Recently,research on uncertainty in multidisciplinary systems has increased gradually.To deal with the computation complexity of the problem,a method is proposed which uses the individual disciplinary feasible(IDF) method to solve the model of reliability-based multidisciplinary design optimization(RBMDO) under the sequential optimization and reliability assessment(SORA) framework.This method decomposes the reliability analysis from multidisciplinary design optimization(MDO).The deterministic MDO and reliability analysis are performed sequentially in order to improve the efficiency of the computation. The IDF method which is one efficient method under MDO is used in the process of reliability analysis and optimization. Finally, two MDO examples are given to verify the efficiency of the proposed method. The results of the examples show that the computational complexity of the functions used by discipline 1 and discipline 2 decreases by 28. 9% and 25.0% respectively.
出处 《航空学报》 EI CAS CSCD 北大核心 2009年第10期1871-1876,共6页 Acta Aeronautica et Astronautica Sinica
基金 国家"863"计划(2007AA04Z403) 教育部高等学校博士学科点专项科研基金(20060614016)
关键词 可靠性设计优化 多学科设计优化 单学科可行法 可靠性设计 优化设计 reliability-based design optimization(RBDO) multidisciplinary design optimization(MDO) individual disciplinary feasible method(IDF) reliability design optimal design
  • 相关文献

参考文献17

  • 1Balling R J, Sobieszczanski J S. An algorithm for solving the system level problem in multilevel optimization [J].Structural Optimization,1995, 9(3/4): 168 -177.
  • 2Bailing R J, Wilkison C A. Execution of multidisciplinary design optimization approaches on common test problems [J]. AIAA Journal, 1997, 35(1): 178-186.
  • 3Shin M K, Park G J. Multidisciplinary design optimization based on independent subspaces[J].Int J Numer Methods Eng, 2005, 64(5): 599-617.
  • 4Kroo I, Altus S, Braun R. Multidisciplinary optimization methods for aircraft preliminary design[R]. AIAA- 1994- 4325,1994.
  • 5Sobieszczanski J S. A step from hierarchic to non hierarchic systems[R]. NASA-CP-3031,1989.
  • 6Sobieszezanski J, Agte J S, Robert R, et al. Bi-level integrated system synthesis[R]. NASA/TM -1998- 208715,1998.
  • 7Yi S I, Shin J K, Park G J. Comparison of MDO methods with mathematics examples[J]. Structural and Multidisci plinary Optimization, 2008, 35(5): 391-402.
  • 8Sues R H, Cesare M A. An innovation framework for re liability-based MDO[C] // Proceedings of the 41st AIAA/ ASME/ASCE/AHS/ASC Structures, Structual Dynamics and Material Conference. 2000.
  • 9Koch P K, Wujek B, Golovidov O. A muti-stage, parallel implementation of probabilistie design optimization in an MDO framework[C]//Proceedings of the 8th AIAA/USAF/NAS/ISSMO Symposium on Multidisciplinary Analysis and Optimization. 2000.
  • 10Padmanabhan D, Batill S M. Decomposition strategies for reliability based multidisciplinary system design [R]. AIAA-2002-5471 , 2002.

同被引文献88

  • 1韩明红,邓家禔.协同优化算法的改进[J].机械工程学报,2006,42(11):34-38. 被引量:34
  • 2Du X P, Guo J, Beeram H B. Sequential optimization and reliability assessment for multiclisciplinary systems design[J].Structural and Muhidisciplinary Optimization, 2008, 35 (2) : 117-130.
  • 3Youn B D, Choi K K. Selecting probabilistic approaches for reliability-based design optimization [J]. AIAA Journal, 2004, 42(1): 124-131.
  • 4Ahn J, Kwon J H. An efficient strategy for reliability-based multidisciplinary design optimization using BLISS[J]. Structure Multidisciplinary Optimization, 2006, 31 (5) : 363- 372.
  • 5Koch P N, Wujek B, Golovidov O. A multi-stage, parallel implementation of probabilistic design optimization in an MDO framework [C] //Proceedings of the 8th AIAA/USAF/NASA/ ISSMO Symposium on Multidisciplinary Analysis and Optimization. Reston: AIAA Press, 2000: 1-11.
  • 6Padmanabhan D, Batill S M. reliability based optimization design [C] //Proceedings of the on Multidisciplinary Analysis Decomposition strategies for in multidisciplinary system 9th AIAA/ISSMO Symposium and Optimization. Reston:AIAA Press, 2002:1-15.
  • 7AIAA Technical Committee on Multidisciplinary Design Optimization. White paper on current state of the art[M]. Reston: AIAA Press, 1991.
  • 8Agte J, de Weck O, Sobieszczanski-Sobieski J, et al. MDO: assessment and direction for advancement-an opinion of one international group [J]. Structural and Muhidisciplinary Optimization, 2010, 40(1/6): 17-33.
  • 9Yi S I, Shin J K, Park G J. Comparison of MDO methods with mathematical examples [J]. Structural and Muhidisciplinary Optimization, 2008, 35(5): 391-402.
  • 10Sues R, Cesare M. An innovative framework for reliability-based MDO [C]//Proceedings of the 41st AIAA/ASME/ ASCE/AHS/ASC Structures, Structural Dynamic, and Materials Conference and Exhibit. Reston: AIAA Press, 2000, 1-9.

引证文献10

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部