期刊文献+

基于自适应遗传算法的冷连轧负荷分配优化 被引量:4

Load Distribution Optimization in Tandem Cold Rolling Based on Adaptive Genetic Algorithm
下载PDF
导出
摘要 针对冷连轧轧制力模型精度低的问题,利用BP神经网络预测变形抗力和摩擦因数,并与现有的轧制力解析模型相结合,用来提高轧制力的设定精度,再以各机架轧制力等比例均衡分配为优化目标,采用改进的自适应遗传算法,设计了一种冷连轧负荷分配优化方法。通过对某五机架冷连轧机的负荷分配进行比较,结果表明自适应遗传算法具有比标准的遗传算法收敛性能更好、精度更高等优点,可以作为冷连轧负荷分配优化的新方法加以推广。 In view of imperfection of the rolling force model in tandem cold rolling, the paper use BP neural network to predict the deformation resistance and friction coefficient then combining with the mathematical model in order to improve the precision of the model. A load distribution method was designed with improving adaptive genetic algorithm in which rolling pressure relative balance was the optimized objective function. The load distribution method was compared with the existing method on five--stand tandem cold rolling mills. Experiments results demonstrate that the improved adaptive genetic optimization algorithm have the advantages of better convergence and higher precision. It provides an effective method in the intelligent optimization for tandem cold milling.
出处 《中国机械工程》 EI CAS CSCD 北大核心 2009年第20期2506-2509,共4页 China Mechanical Engineering
基金 "十一五"国家科技支撑计划资助项目(2007BAF02B12)
关键词 BP神经网路 自适应遗传算法 冷连轧机 负荷分配优化 BP neural network adaptive genetic algorithm tandem cold milling load distribution optimization
  • 相关文献

参考文献8

二级参考文献14

共引文献29

同被引文献35

引证文献4

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部