期刊文献+

基于有限质点法的结构屈曲行为分析 被引量:26

BUCKLING ANALYSIS OF STRUCTURES BY THE FINITE PARTICLE METHOD
原文传递
导出
摘要 有限质点法是一种新颖的结构分析方法,它以向量力学和数值计算为基础,将结构离散为质点群,采用牛顿第二定律描述这些质点的运动。该方法中引入移动基础架构求解结构单元内力。采用显示时间积分求解运动方程,避免了迭代求解非线性方程组。该文采用有限质点法分析结构的屈曲行为。以空间杆单元为例推导了有限质点法计算公式。利用自编程序,对空间杆系结构的屈曲行为进行了模拟。在不经过任何特殊处理的情况下,该方法不仅可以越过屈曲极值点,而且能够跟踪结构屈曲后的行为。此外,该方法无需分级加载即可模拟结构的屈曲行为,结构荷载可以在计算分析的初始步全部加在结构上,更符合实际情况。通过算例验证表明有限质点法在结构屈曲行为模拟中的适用性和真实性。 The finite particle method (FPM) is a new structural analysis method which is based on the Vector Mechanics and numerical calculations. In this method, the analyzed domain is discretized into finite particles, whose motion follows Newton's second law. The convected material frame is introduced to calculate the internal force of the structural element. To avoid iteration in solving nonlinear motion equations, the explicit time integration is adopted. This paper presents a buckling analysis of structures using FPM. Taking the three dimensional bar element as an example, the formulations of the FPM are derived in the paper. Structural buckling behaviors are simulated with the program based on the FPM algorithm. This method can reach the critical load and track post-buckling behaviors of structures without any special considerations. In addition, there is no need to apply structural loads gradually. All loads can be applied to the structures at the initial step of the analysis, which accords with the practical situation. Several numerical examples are presented to demonstrate the capabilities and accuracy of this method in the buckling analysis of structures.
作者 喻莹 罗尧治
出处 《工程力学》 EI CSCD 北大核心 2009年第10期23-29,共7页 Engineering Mechanics
基金 国家"863"项目(2007AA04Z441) 新世纪优秀人才支持计划项目(NCET-06-0517)
关键词 有限质点法 牛顿第二定律 移动基础架构 杆单元 屈曲 finite particle method (FPM) Newton's second law convected material frame bar element buckling
  • 相关文献

参考文献12

  • 1Riks E. An increment approach to the solution of snapping and buckling problems [J]. International Journal of Solids Structures, 1979, 15(5): 529--551.
  • 2Crisfield M A. An arc-length method including line searches and accelerations [J]. International Journal of Numerical Methods in Engineering, 1983, 19(2): 1269-- 1289.
  • 3Pellegrino S. Structural computation with the singular value decomposition of the equilibrium [J]. International Journal of Solids Structures, 1993, 30(21): 3025 -- 3035.
  • 4Luo Yaozhi, Lu Jinyu, Geometrically non-linear force method for assemblies with infinitesimal mechanisms [J]. Computers & Structures, 2006, 84(31-32): 2194--2199.
  • 5Lu Jinyu, Luo Yaozhi. Pre- and post-buckling analysis of structures by geometrically nonlinear force method [C]. The 3rd International Conference on Steel and Composite Structures. Mancheste: Taylor & Francis, 2007.
  • 6Ting E C, Shih C, Wang Y K. Fundamentals of a vector form intrinsic finite element: Part I. Basic procedure and a plane flame element [J]. Journal of Mechanics, 2004, 20(2): 113-- 122.
  • 7Wu T Y, Wang R Z, Wang C Y. Large deflection analysis of flexible planar frames [J]. Journal of the Chinese Institute of Engineers, 2006, 29(4): 593 -- 606.
  • 8Wang R Z, Chuang C C, Wu T Y, Wang C Y. Vector form analysis of space truss structure in large elastic-plastic deformation [J]. Journal of the Chinese Institute of Civil Hydraulic Engineering, 2005, 17(4): 633--646.
  • 9Wang C Y, Wang R Z, Tai K C. Numerical simulation of the progressive failure and collapse of structure under seismic and impact loading [C]. 4th International Conference on Earthquake Engineering. Taipei: NCREE, 2006.
  • 10Goldstein H. Classical mechanics [M]. Massachusetts: Addison-Wesley Publishing, 1959.

同被引文献171

引证文献26

二级引证文献120

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部