期刊文献+

立方图的可圈性 被引量:1

Cyclable cube of a graph
下载PDF
导出
摘要 图的可圈性是哈密尔顿性的一个推广.设G是有向图,如果对G的每一个定向D,都存在S(D)V(G)使在D中改变所有恰与S(D)中一个顶点相关联的弧的方向后所得到的图为有向哈密尔顿图,则称G为可圈图.证明至少含5个顶点的连通图G的立方图是可圈图当且仅当G不同构于任何一条偶路.该结果改进了Klostermeyer的3个定理. The cyclability of graphs is a generalization of Hamiltonian. A graph G is said to be cyelable if for each orientation D of G, there exits a set S(D)íV(G) such that revising all the arcs with one end in S results in a Hamiltonian digraph. Show that the cube of a connected graph with at least five vertices is cyclable if and only if this graph is not isomorphic to any even path. This improves these results of Klostermeyer et al.
出处 《湖北大学学报(自然科学版)》 CAS 北大核心 2009年第3期232-234,240,共4页 Journal of Hubei University:Natural Science
基金 国家自然科学基金(10671081)资助
关键词 可圈性 哈密尔顿路 哈密尔顿连通 哈密尔顿图 立方图 Hamiltonian path Hamiltonian-connected Hamiltonian digraph cube
  • 相关文献

参考文献10

  • 1BONDY,J A,MURTY,et al.图论及其应用[M].北京:科学出版社,1984.
  • 2Pretzel O. Orientations and edge functions on graphs n surveys in combinatorics[J]. Keedwell A D. London Mathematical Society Lecture Notess Series, 1991,166 : 161 - 185.
  • 3Pretzel O. On reorienting graphs by pushing down maximal vertices[J].Order, 1986,3: 135- 153.
  • 4Pretzel O. On graphs that can be oriented as diagrams of ordered sets[J].Order, 1985,2:25 - 40.
  • 5Klostermeyer W. Pushing vertices and orienting edges[J].Ars Combin, 1999,51:65 - 75.
  • 6Klostermeyer W,Soltes L. Hamiltonicity and reversing arcs in digraphs[J]. J Graph Theory, 1998,28:13 - 30.
  • 7Karaganis J J. On the cube of a graph [J]. Canad Math Bull, 1968,11:295.
  • 8Sekanina R. On an ordering of the set of vertices of a connected graph[J]. Pual Fac Sci UnivBrno, 1960,412:137 - 142.
  • 9孙静,陈园,胡智全.关于一类立方图的可圈性研究[J].华中师范大学学报(自然科学版),2006,40(1):16-17. 被引量:3
  • 10Liu H, Lu M, Tian F. Neighborhood unions and cyclability of graphs[J]. Discrete Applied Mathematics, 2004,140: 91 -101.

二级参考文献6

  • 1Bondy J A,Murty U S R.图论及其应用[M].吴望名,李念祖译.北京:科学出版社,1984.
  • 2Pretzel O.Orientations and edges functions on graphs,in:Surveys in combinatorics[J].London Mathematical Society Lecture Notes Series,1991,166:161-185.
  • 3Pretzel O.On reorienting graphs by pushing down maximal vertices[J].Order,1986,3:135-153.
  • 4Pretzel O.On graphs that can be oriented as diagrams of ordered sets[J].Order,1985,2:25-40.
  • 5Klostermeyer W.Pushing vertices and orienting edges[J].Ars Combinatoria,1999,51:65-75.
  • 6Klostermeyer W,Soltes L.Hamiltonicity and reversing arcs in digraphs[J].J Graph Theory,1998,28:13-30.

共引文献4

同被引文献1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部