摘要
图的可圈性是哈密尔顿性的一个推广.设G是有向图,如果对G的每一个定向D,都存在S(D)V(G)使在D中改变所有恰与S(D)中一个顶点相关联的弧的方向后所得到的图为有向哈密尔顿图,则称G为可圈图.证明至少含5个顶点的连通图G的立方图是可圈图当且仅当G不同构于任何一条偶路.该结果改进了Klostermeyer的3个定理.
The cyclability of graphs is a generalization of Hamiltonian. A graph G is said to be cyelable if for each orientation D of G, there exits a set S(D)íV(G) such that revising all the arcs with one end in S results in a Hamiltonian digraph. Show that the cube of a connected graph with at least five vertices is cyclable if and only if this graph is not isomorphic to any even path. This improves these results of Klostermeyer et al.
出处
《湖北大学学报(自然科学版)》
CAS
北大核心
2009年第3期232-234,240,共4页
Journal of Hubei University:Natural Science
基金
国家自然科学基金(10671081)资助