期刊文献+

最优路径问题的自适应伪并行免疫算法 被引量:1

Adaptive pseudo-parallel immune algorithm on optimal path planning problem
下载PDF
导出
摘要 针对标准遗传算法在解决路径规划问题中存在的不能以概率1收敛及进化时出现退化等情况,提出并实现了一种自适应伪并行免疫算法。利用多个子种群同时进化及小生境技术,给出了一种小生境伪并行协同进化策略。提出了一种新的编解码方式,给出了相关的免疫克隆、免疫优势等免疫算子的具体设计。进化过程中克隆规模可依据抗体-抗原亲合度、抗体-抗体亲合力自适应调整,采取了最优保存策略从而保证了算法以概率1收敛。实例验证了该算法的可行性、有效性,与标准遗传算法相比,增强了全局收敛,提高了收敛速度,通过仿真验证,该算法运算速度快、结果精度高,为路径规划问题研究提供了一种新方法。 In solving path planning,standard genetic algorithm exists the problem of non-convergence with probability one and inevitable degeneration.Faced with this problem,a new algorithm named Adaptive Pseudo-Parallel Immune Algorithm (APPIA) is presented and realized.A niche pseudo-parallel cooperation evolution strategy is given based on evolution of several filial-popula- tion and niche teehnique.A new symbol encoding and decoding style is presented,the design of immune clone,immune domi- nance of immune operator are given.The clone scale can be regulated automatically by affinity between antibody and antigen,and between antibodies during evolution.By use of elitist strategy,the algorithm can be convergent with probability one.The feasibility and validity of the algorithm are validated by the calculation instance.Compared with standard genetic algorithm,the algorithm has improved the speed of convergence and has achieved higher capacity of global optimization.The instance shows that it is a high speed and fidelity method and provides a new approach for solving the problem of optimal path planning.
出处 《计算机工程与应用》 CSCD 北大核心 2009年第26期43-45,共3页 Computer Engineering and Applications
关键词 路径规划 小生境 免疫克隆 最优保存策略 免疫算法 path planning niche immune clone elitist strategy immune algorithm
  • 相关文献

参考文献7

  • 1Forrest S,Hofmeyr S A.Immunology as information processing[C]// Segel L A,Cohen I R.Design Principles for the Immune System and Other Distributed Autonomous Systems.USA:Oxford University Press, 2000.
  • 2Dasgupta D.Artificial immune systems and their applications[M]. Berlin Heidelberg:Springer-Verlang, 1999.
  • 3李中华,毛宗源,郑日荣,伍建平.基于人工免疫算法的电梯交通动态分区的优化[J].华南理工大学学报(自然科学版),2004,32(10):46-50. 被引量:12
  • 4李擎,张伟,尹怡欣,王志良.一种用于最优路径规划的改进遗传算法[J].信息与控制,2006,35(4):444-447. 被引量:18
  • 5张永军,高兰芳,顾畹仪.一种最短路由问题的遗传算法研究[J].北京理工大学学报,2007,27(11):1005-1008. 被引量:3
  • 6周明,孙树栋.遗传算法原理及应用[M].北京:国防工业出版社,2005.
  • 7Oliver L M.A study of permutation crossover operators on the traveling salesman problem[C]//Proc of 2nd Int Conf on Genetic Algorithms, Lawrence Erlbaum Associates, 1987 : 224-230.

二级参考文献16

  • 1段俊花,李孝安.基于改进遗传算法的机器人路径规划[J].微电子学与计算机,2005,22(1):70-72. 被引量:26
  • 2SunBaolin,LiLayuan.Optimizing on multiple constrained QoS multicast routing algorithms based on GA[J].Journal of Systems Engineering and Electronics,2004,15(4):677-683. 被引量:6
  • 3李擎,宋顶立,张双江,李哲,刘建光,王志良.两种改进的最优路径规划算法[J].北京科技大学学报,2005,27(3):367-370. 被引量:27
  • 4陈云亮,杨捷,康立山.求解动态组播路由问题的混合优化遗传算法[J].计算机应用,2006,26(8):1947-1949. 被引量:4
  • 5[1]Barney G C,dos Santos S M.Elevator Traffic Analysis,Design and Control [M].London:Peter Peregrinus,1985.
  • 6[2]Powell B A.Important issues in up-peak traffic handling [A].Proceedings of the 1992 International Conferences on Elevator Technologies [C].Amsterdam:International Association of Elevator Engineers,1992.207-218.
  • 7[3]Chan W L,So A T P,Lam K C.Dynamic zoning in elevator traffic control [A].Proceedings of the 1995 International Conferences on Elevator Technologies [C].Hongkong:International Association of Elevator Engineers,1995.132-140.
  • 8[4]So A T P,Chan W L.Comprehensive dynamic zoning algorithms [J]. Elevator World,1997,XLV(8):99-109.
  • 9[5]Dasgupta D.Artificial Immune Systems and Their Applications [M].Berlin:Springer-Verlag,1999.
  • 10[6]Beresini H,Varela F J.The immune recruitment mechanism:a selective evolutionary strategy [A].Proceedings of the 1991 International Conference on Genetic Algorithms [C].San Diego:Morgan Kaufmann,1991.520-526.

共引文献81

同被引文献11

引证文献1

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部