期刊文献+

基于事务拆分的超团挖掘算法

Hyperclique Mining Algorithm Based on Transaction Splitting
下载PDF
导出
摘要 为发现处在低支持度下的潜在有趣模式,针对传统基于支持度策略的模式发现算法存在的问题,提出一种基于改进Relim算法的超团模式挖掘算法,将一个事务拆分为2个或多个事务,把相同事务进行压缩,并用Relim算法的思想进行超团模式挖掘。仿真实验结果表明,该算法能有效提高超团模式的挖掘效率。 In order to discover potential interesting patterns at low levels of support,aiming at problems in traditional support degree-based mode discovering algorithm,this paper proposes a hyperclique mining algorithm based on improved Relim algorithm.It splits a transaction into two or more transactions and compresses the same transactions.By using the idea of Relim algorithm,the hyperclique pattern is mined.Simulation experimental results show this algorithm can promote the mining efficiency for hyperclique pattern.
出处 《计算机工程》 CAS CSCD 北大核心 2009年第20期62-65,共4页 Computer Engineering
基金 国家"863"计划基金资助项目(2007AA01Z417) 高等学校学科创新引智计划基金资助项目(B08004)
关键词 数据挖掘 关联规则 超团模式 事务拆分 Relim算法 data mining association rules hyperclique pattern transaction splitting Relim algorithm
  • 相关文献

参考文献6

  • 1Agrawal R. Mining Association Rules Between Sets of Items in Large Databases[C]//Proc. of ACM Conf. on Management of Data. New York, USA: ACM Press, 1993.
  • 2Han Jiawei, Pei Jian, Yin Yiwen. Mining Frequent Patterns Without Candidate Generation[C]//Proc. of ACM Conf. on the Management of Data. New York, USA: ACM Press, 2000.
  • 3Pei Jian, Han Jiawei. H-Mine: Hyper-structure Mining of Frequent Patterns in Large Databases[C]//Proc. of IEEE Conf. on Data Mining. Piscataway, NJ, USA: IEEE Press, 2001.
  • 4Borgelt C. Keeping Things Simple: Finding Frequent Item Sets by Recursive Elimination[C]//Proc. of Workshop Open Source Data Mining Software. New York, USA: ACM Press, 2005.
  • 5Hui Xiong. Hyperclique Pattern Discovery[J]. Data Mining and Knowledge Discovery Journal, 2006, 13(2): 219-242.
  • 6刘喜苹,刘彩苹,谭义红.一个新的不需要候选集的挖掘关联规则算法——Relim算法的研究[J].计算技术与自动化,2006,25(2):81-84. 被引量:4

二级参考文献11

  • 1JiaweiHan MichelineKamber 范明 孟小峰 译.Data Mining Concepts and Techniques[M].北京:机械工业出版社,2001..
  • 2Rakesh Agrawal,Tomasz Imielienski,and Arum Swami.Mining Association Rules between Sets of Items in large Databases[A].Proc Conf on Management of Data.ACM Press[C],New York,NY,USA 1993.207-216.
  • 3Jong Soo Park,Ming-Syan Chen,and PhilipS Yu.An effective hash-based algorithm for mining association rules[A].In Proc 1995 ACM-SIGMOD Int.Conf Management of Data (SIGMOD'95)[C],San Jose,CA,May 1995.175-186.
  • 4Askok Savasere,Edward Omiecinski,and Shamkant Navathe.An efficient algorithm for mining association rules in large databases[A].In Proc.1995 Int.Conf.Very Large Data Bases (VLDB'95)[C],Zurich,Switzerland,Sept.1995.432443.
  • 5Jiawen Han,Jian Pei,and Yiwen Yin.Mining frequent patterns without candidate generation[A].In Proc.2000 ACM -SIGMOD Int.Conf.Management of Data (SIGMOD 2000)[C].New York:ACM Press,2000.1-12.
  • 6Synthetic Data Generation Code for Associations and Sequential Patterns[EB/OL].http://www.almaden.ibm.com/software/quest/Resources/index.shtml Intelligent Information Systems,IBM Almaden Research Center
  • 7C.L.Blake and C.J.Merz.UCI Repository of Machine Learning Databases,Dept.of Information and Computer Science,University of California at Irvine,CA,USA 1998[EB/OL].http://www.ics.uci.edu/mlearn/MLRepository.html
  • 8[EB/OL] http://fimi.cs.helsinki.fi/data/
  • 9铁治欣,陈奇,俞瑞钊.采掘关联规则的高效并行算法[J].计算机研究与发展,1999,36(8):948-953. 被引量:37
  • 10周海岩.关联规则的开采与更新[J].软件学报,1999,10(10):1078-1084. 被引量:40

共引文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部