期刊文献+

基于高阶统计量的小波变换去噪算法 被引量:7

HOS-based Wavelet Denoising Algorithm
下载PDF
导出
摘要 图像在获取和传输的过程中经常要受到噪声的污染。传统的去噪方法不仅滤出了图像的噪声,同时使图像细节变得模糊。本文提出一种基于双谱和小波变换的去噪算法。该方法是根据高斯噪声及椒盐噪声在小波变换下的不同特征,并结合双谱滤波、中值滤波的特点,在小波域内对高频子带进行双谱滤波,去除图像中的高斯噪声,然后进行中值滤波,去除图像中的椒盐噪声。高斯噪声的双谱为零,能够彻底的去除高斯噪声。该算法的实验结果表明不仅能滤出图像中高斯噪声和椒盐噪声,而且能较好的保留图像的边缘细节,其滤波效果优于传统的图像去噪方法。 The image is often corrupted by noise in its acquisition or transmission. The traditional denoise before analysis will cause the image detail change fuzzy when filter out image noise. In the paper, an efficient technique based on Bispectral and Wavelet transform is proposed. According to the characteristic of ' Gaussian' noise and ‘salt and pepper' noise under wavelet transform, the high-frequency subband images is filtered with the property of Bispectral filter, this remove the ' Gaussian' noise. Then the subband images is denoised by using median filter to remove the ‘salt and pepper' noise. The experiment results show that the method not only efficiently remove the mixed 'salt and pepper' noise and ‘Gaussian' noise in image, but also preserve the image edge information. The filtering performance is better than that by traditional denoising method.
出处 《长春理工大学学报(自然科学版)》 2009年第2期251-253,共3页 Journal of Changchun University of Science and Technology(Natural Science Edition)
基金 校科研启动基金
关键词 双谱 小波变换 高斯噪声 椒盐噪声 图像去噪 bispectral wavelet transform gaussian noise salt and pepper Noise image-denoising
  • 相关文献

参考文献6

  • 1Mihcak M K, Kozintsev I. Low-complexity image denoising based on statistical modeling of wavelet coefficients [ J ].IEEE signal Processing Lett, 1999,6: 300-303.
  • 2Chang S A G, Yu B, Vetterli M. Adaptive wavelet thresholding for image denoising and compression [ J ].IEEE Trans. Image Processing, 2000,9:1332-1546.
  • 3Mallat Stephane, Wen Liang Hwang. Singularity Detection and Processing with Wavelets[J].IEEE Trans On In formation Theory, 1992, 38(2 ): 617-643.
  • 4Ran Xiaonon G, Farvardin N. A perceptu2 ally motivated three2component image model Part 1 :Description of model [J].IEEE Trans IP , 1995 , 4( 4 ) :401-405.
  • 5Ran Xiaonog G, Farvardin N. A perceptually motivated three-component image model-Part 1 :Description of model [J].I EEE Trans I P , 1995 , 4( 4 ): 401-405.
  • 6王艳玲,王宏志,李玲.一种基于双谱的图像噪声去除方法[J].长春工业大学学报,2005,26(2):114-116. 被引量:3

二级参考文献4

  • 1GONZALEZ R C WOODS R E. Digital image processing[M]. USA: Addison-Wdsley, Mass, 1992 .
  • 2RAN XIAONONG, FARVARDIN N. A perceptually motivated three-component image model-Part 1:Description of model[J].IEEE Trans IP, 1995,4(4):401-405.
  • 3NAMUDURI, KAMESWARE R, MURENZI ROMAIN. Kaplan lance M scalebased approch for image quality evaluation[J]. Proc. SlPE, 1998,3308-3643.
  • 4王思贤,曾发龙.平滑图像噪声的差值滤波法[J].电子科学学刊,2000,22(3):411-415. 被引量:16

共引文献2

同被引文献35

  • 1蔡敦虎,羿旭明.小波基的选取对图像去噪的影响[J].数学杂志,2005,25(2):185-190. 被引量:25
  • 2胡蕾,张伟,覃庆炎.几种图像去噪算法的应用分析[J].信息技术,2007,31(7):81-83. 被引量:21
  • 3张贤达.非平稳信号分析与处理[M].北京:国防工业出版社,1997..
  • 4王正林.精通MATLAB7[M].北京:电子工业出版社.2007.
  • 5Coifmarr R, Wickauser M. Entropy based algorithms for best basis selection [ J ].IEEE trans on Information Theory, 1992,38( 2 ):909-996.
  • 6葛哲学,陈仲生.MATLAB时频分析技术与应用[M].北京:人民邮电出版社,2006.
  • 7Lukin V,Totsky A,Kurekin A,et al.Signal Waveform Reconstruction from Noisy Bispectrum Estimations Pre-processed by Vector Filters[C]//Proceedings of the Seventh International Symp on Signal Processing and Its Applications.Paris:IEEE,2003:169-172.
  • 8Bartelt H,Lohman A W,Wirnitzer B.Phase and Amplitude Recovery from Bispectra[J].Applied Optics,1984,72(10):3121-3129.
  • 9Donoho D L.Johnstone I M.Adapting to unknow smoothness via wavelet shrinkage[J].J Amor Stat Assoc,1995,90:1200-1224.
  • 10阎迪,许录平,谢振华.脉冲星信号的模糊阈值小波降噪算法[J].西安交通大学学报,2007,41(10):1193-1196. 被引量:16

引证文献7

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部