期刊文献+

改进的支持向量机SMO算法说话人识别系统研究 被引量:1

Speaker Recognition Research Based on Support Vector Machine of improved SMO algorithm
下载PDF
导出
摘要 支持向量机是统计学习理论的一个重要的学习方法,也是解决模式识别问题的有效工具。本文把支持向量机应用在说话人识别系统中,对支持向量机的SMO算法进行了论述,并对SMO中有关两个待优化拉格朗日乘子的选取做了改进,用简单的排列算法取代函数集中的遍历操作来使目标函数值下降,实验证明SMO算法具有占用内存少,运算速度快等优点,本文中的SMO改进算法可以节省50%时间。 Support Vector Machine (SVM) is a new and very promising classification technique. The approach is properly motivated by statistical learning theory. It is a strong tool to solve identification problems. This paper studies the speaker recognition applied in Support Vector Machine, discuss the SMO algorithm, and improve the selection of the two preparation optimization lagrange multiplier in SMO relevant to pick two laplacian multiplier for optimization, using the sequencing array instead of alternating loop to decrease the target function value, the experiment certificates that SMO algorithm really has the advantage of taking up little memory and fast calculate speed, The improvement to SMO algorithm in this paper is proved that it can save time 50% approximately compared with pre-improved situation.
出处 《长春理工大学学报(自然科学版)》 2009年第2期279-281,263,共4页 Journal of Changchun University of Science and Technology(Natural Science Edition)
关键词 支持向量机 说话人识别 SMO 拉格朗日乘子 Support Vector Machine speaker recognition SMO lagrange multiplier
  • 相关文献

参考文献5

二级参考文献32

共引文献13

同被引文献2

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部