期刊文献+

一种基于压缩FP-树的最大频繁项集挖掘算法 被引量:3

A Compressed FP-Tree Based on Algorithm for Mining Maximal Frequent Itemsets
下载PDF
导出
摘要 针对基于FP-树挖掘最大频繁项集的算法需要大量的递归调用导致挖掘效率降低的问题,本文提出一种减枝策略并结合FP-树的结构,依据构造Patricia-树的基本原理提出一种PFP-树,将FP-树中满足一定条件的结点进行合并来保存事务数据库,对事务数据库进行进一步压缩以达到降低内存开销和递归调用次数的目的。实验表明,当最小支持度较小时,在执行效率尤其在内存开销方面都有一定的改善。 As to the problem of when mining the maximal frequent itemsets based on FP-tree, it need a great lot ofrecursion call to lead to reduce efficiency. This present paper proposed a prune strategy, and proposed a PFP-tree after considering the structure of FP-tree and the principle of Patricia-tree. The PFP-tree is constructed from FP-tree by combining the nodes that satisfy some conditions. Using PFP-tree can achieve more compress storage of the database, so can obtain the purpose of reduce the main memory requirements and the count ofrecursion calls. Experimental results show that this method can achieve the improvement of in efficiency and in the main memory requirement particularly when the minimal support is small.
作者 马达 王佳强
出处 《长春理工大学学报(自然科学版)》 2009年第3期457-461,共5页 Journal of Changchun University of Science and Technology(Natural Science Edition)
基金 国家自然科学基金重大项目(60496321) 国家自然科学基金(60573073 60773099) 国家863高技术研究发展计划项目基金(2006AA10Z245 2006AA10A309)
关键词 最大频繁项集 减枝策略 Patricia-树 FP-树 maximal frequent itemsets prune strategy Patricia-tree FP-tree
  • 相关文献

参考文献1

二级参考文献13

  • 1宋余庆 朱玉全 孙志辉 陈耿.基于FP—Tree的最大频繁项集挖掘及其更新算法.软件学报,2003,14(9):1586—1592[J].http://wwwjos.org.cn/1000-9825/14/1586.htm,:.
  • 2Agrawal R, Srikant R. Fast algorithms for mining association rules. In: Proc. of the 20th Int'l Conf. on VLDB. 1994. 487-499.http://www.almaden.ibm.conVcs/people/srikant/papers/vldb94.pdf.
  • 3Bayardo R. Efficiently mining long patterns from databases. In: Haas LM, ed. Proc. of the ACM SIGMOD Int'l Conf. on Management of Data. New York: ACM Press, 1998. 85-93.
  • 4Burdick D, Calimlim M, Gehrke J. Mafia: A maximal frequent itemset algorithm for transactional databases. In: Proc. of the 17th Int'l Conf. on Data Engineering. 2001. 443-452. http://www.cs.cornell.edu/boom/2001 sp/yiu/mafia-camera.pdf.
  • 5Gouda K, Zaki MJ. Efficiently mining maximal frequent itemsets. In: Proc. of the 1st IEEE Int'l Conf. on Data Mining. 2001.163-170. http ://www.cs .tau. ac .il/-fiat/dmsem03/E fficient%20Mining%20Maxmal%20Frequent%20Itemsets%20-%202001 .pdf.
  • 6Wang H, Li QH. An improved maximal frequent itemset algorithm. In: Wang GY, eds. Proc of the Rough Sets, Fuzzy Sets, Data Mining, and Granular Computing, the 9th Int'l Conf (RSFDGrC 2003). LNCS 2639, Heidelberg: Springer-Verlag, 2003. 484-490.
  • 7Zhou QH, Wesley C, Lu BJ. SmartMiner: A depth 1st algorithm guided by tail information for mining maximal frequent itemsets.In: Proc of the IEEE Int'l Conf on Data Mining (ICDM2002). 2002. 570-577. http://www.serviceware.com/pdffiles/datasheets/ServiceWare-Smartminer-Datasheet.pdf.
  • 8Grahne G, Zhu JF. High performance mining of maximal frequent itemsets. In: Proc of the 6th SIAM Int'l Workshop on High Performance Data Mining (HPDM 2003). 2003. 135-143. http://www.cs.concordia.ca/db/dbdm/hpdm03.pdf.
  • 9Agarwal RC, Aggarwal CC, Prasad VVV. Depth 1 st generation of long patterns. In: Proc. of the 6th ACM SIGKDD Int'l Conf on Knowledge Discovery and Data Mining. 2000. 108-118. http://www.cs.tau.ac.il/-fiat/dmsem03/Depth%20First%20Generation%20of%20Long%20Patterns%20-%202000.pdf.
  • 10Wang H, Xiao ZJ, Zhang H J, Jiang SY. Parallel algorithm for mining maximal frequent patterns. In: Zhou XM, ed. Advanced Parallel Processing Technologies (APPT 2003). LNCS 2834, Heidelberg: Springer-Verlag, 2003. 241-248.

共引文献67

同被引文献15

引证文献3

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部