期刊文献+

基于连续时间系统仿真的神经网络学习算法 被引量:1

Learning Algorithm for Neural Networks Based upon Continuous-time System Simulation
下载PDF
导出
摘要 从连续时间动力学的角度,研究了多层前馈神经网络的学习问题。基于李雅普诺夫稳定性分析方法,建立了一种神经网络权重参数连续调整的学习算法,并基于连续时间系统仿真的思想,给出了一种算法实现的自适应策略。算法实现中,通过估计截断误差估计自动调整步长,几乎不需要人工确定任何参数,而且可以保证算法的稳定性及计算精度。最后,给出了两个典型的应用算例。 The learning issue in feedforward neural networks was investigated and analyzed from the viewpoint of continuous-time system dynamics. A continuous learning algorithm for the multilayer feedforwad networks was set up based on Lyapunov stability theory, and an adaptive updating law for the network weights was presented upon the continuous-time system simulation. In the algorithm implementation, the estimated tnmcation error was applied to adjust the step-size. Almost no preset parameters are required to operate the discrete-time adaptive learning laws, and numerical stability and satisfactory accuracy are assured. Finally, two illustrative examples were given.
出处 《系统仿真学报》 CAS CSCD 北大核心 2009年第20期6387-6390,共4页 Journal of System Simulation
基金 国家自然科学基金(60602025)
关键词 连续时间系统 前馈神经网络 自适应学习算法 误差动力学 数字仿真 continuous-time system feedforward neural networks adaptive updating laws error dynamics digital simulation
  • 相关文献

参考文献9

  • 1Deniz Erdogmus, Oscar Fontenla-Romero, Jose C Principe, et al. Linear-Least-Squares Initializations of Multilayer Perceptrons through Backpropagation of the Desired Response [J]. IEEE Transaction on Neural Networks (S1045-9227), 2005, 16(2): 325-337.
  • 2Cheng Xiang, Sheng Q Ding, Tong Heng Lee. Geometry Interpretation and Architecture Selection of MLP [J]. IEEE Transaction on Neural Networks (S 1045-9227), 2005, 16( 1 ): 84-96.
  • 3Rumelhart D E, McCleland J K. Parallel Distributed Processing: Explorations in the Microstructure of Cognition [M]. USA: MIT Press, 1986.
  • 4Robert Hecht-Nielsen. Theory of the Backpropagation Neural Network [C]// IJCNN International Joint Conference on Neural Networks. USA: IEEE, 1989, 1: 593-605.
  • 5Terrence Li. Fine, Feedforward Neural Network Methodology [M]. New York, USA: Springer-Verlag Inc., 1999.
  • 6Hojjiat Adeli, Shihn-Lin Hung. Machine Learning-Neural Networks, Genetic Algorithms, and Fuzzy System [M]. USA: John Wiley & Sons, Inc., 1995.
  • 7Kolias S, Anastassious D. An Adaptive Least Squares Algorithm for the Efficient Training of Artificial Neural Networks [J]. IEEE Transaction on Circuits and Systems (S0098-4094), 1989, 36(8): 1092-1101.
  • 8Douglas S C, Meng T H-Y. Linearized Least-Squares Training of Multilayer Feedforward Neural Networks [C]//IEEE Int. Joint Conf. on Neural Networks, 1991. USA: IEEE, 1991, 1: I307-I312.
  • 9Hush D R, Salas J M. Improving the Learning Rate of BackPropagation with the Gradient Reuse Algorithm [C]//IEEE Int. Conf. on Neural Networks, 1988. USA: IEEE, 1988, 1: 441-447.

同被引文献7

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部