期刊文献+

基于聚类和SVM多分类的容差模拟电路故障诊断 被引量:16

Fault Diagnosis of Analog Circuits with Tolerance Based on Clustering and SVM Multi-Classification
下载PDF
导出
摘要 针对模拟电路故障的容差特性,提出了基于聚类和二叉树SVM多分类相结合的诊断方法。在每个故障特征样本子空间中,建立所有样本与样本重心的空间方向相似度并对其进行升序排列,把排列后的空间方向相似度作为聚类对象,根据聚类分析结果选择故障特征样本,利用所选样本训练二叉树SVM多分类器,实现故障特征样本的分类决策。用故障测试样本进行检验,实验表明采用该诊断方法可以解决容差模拟电路故障模式的识别问题。 Based on clustering method and binary tree SVM multi-classification, a new approach was proposed for the uncertainty characteristic of analog circuits with tolerance. In faulty sample subspace, the spatial direction similar degree of each sample with samples gravity was calculated and which of ascending sort was clustered to select faulty characteristic samples. The binary tree SVM multi-classifier was trained by faulty characteristic samples of preselection to implement classification criterion. By faulty testing samples verification, experiment shows the diagnosis classifiers based on clustering method and binary tree SVM multi-classification can solve the essential recognition problem for analog circuits with tolerance fault types.
出处 《系统仿真学报》 CAS CSCD 北大核心 2009年第20期6479-6482,共4页 Journal of System Simulation
基金 国家自然科学基金重点课题(60736026) "教育部新世纪优秀人才支持计划"
关键词 故障诊断 支持向量机 聚类 模拟电路 多类分类 fault diagnosis support vector machine cluster analog circuits multi-class classification
  • 相关文献

参考文献5

二级参考文献34

  • 1王建会,申展,胡运发.一种实用高效的聚类算法[J].软件学报,2004,15(5):697-705. 被引量:26
  • 2张敏,于剑.基于划分的模糊聚类算法[J].软件学报,2004,15(6):858-868. 被引量:176
  • 3王虎符,伍远生,杨叔孔.非线性电路的k故障屏蔽[J].电子学报,1990,18(1):104-108. 被引量:11
  • 4边肇祺.模式识别[M].清华大学出版社,1999..
  • 5Poyhonen S, Negrea M, Arkkio A, et o2. Support vector classificationfor fault diagnostics of an electrical machine[A]. Proc. of InL Conf. OnSignal Processing (ICSP'02)[C]. Beijing, August, 2002: 26-30.
  • 6Bezdek J C. Pattern Recognition with Fuzzy Objective Function Algorithms [ M ]. New York: Plenum Press,1981.
  • 7Krishnapuram R, Keller J M. A Possibilistic Approach to Clustering[J]. IEEE Trans. on Fuzzy Systems, 1993, 1(2) :98 - 110.
  • 8Cherkassky V, Mulier F. Learning from Data Concepts,Theory, and Methods[M]. John Wiley&Sons, Inc. 1998.413 - 417.
  • 9Barni M, Cappellini V, Mecocci A. Comments on ' A Possibilistic Approach to Clustering' [ J ]. IEEE Trans. on Fuzzy Systems, 1996,4(3) :393 - 396.
  • 10Schneider A. Weighted Possibilistic Clustering Algorithms[J]. In: Proc. of the 9th IEEE Int'l Conf. on Fuzzy Systems. Texas: IEEE, 2000,1:176 - 180.

共引文献168

同被引文献148

引证文献16

二级引证文献95

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部