期刊文献+

基于粒子多样性研究的改进PSO算法 被引量:5

Improved PSO Algorithm Based on Diversity of Particle Swarm
下载PDF
导出
摘要 从研究粒子群多样性影响PSO算法最优适应值进化的角度出发,结合目前已取得的惯性权值非线性动态自适应调节的研究成果,给出了一种带"精英集团"策略和变异操作的改进PSO算法。对几个高维典型函数的最优化解的测试结果表明,改进算法同时具备较强的全局探索能力和局部开发能力,能够在保证算法较快收敛的前提下,有效地提高最优化解的精度。 An improved particle swarm optimization (PSO) algorithm was proposed based on the study of the relation between particles 'diversity and the best fitness value during the whole process of iterations. A strategy of "'elite group '" and mutation operation were adopted to improve the optimization algorithm. The fruit of nonlinear inertia weight variation for dynamic adaptation in PSO was used for reference. The results of several simulations for different high dimension benchmark functions illustrate that the proposed algorithm has both better ability of global exploration and local exploitation, and the optimal precision is effectively improved under the condition of guaranteeing the convergence of PSO algorithm.
出处 《系统仿真学报》 CAS CSCD 北大核心 2009年第20期6483-6486,共4页 Journal of System Simulation
关键词 粒子群算法 多样性 全局探索 局部开发 收敛性 particle swarm optimization diversity global exploration local exploitation convergence
  • 相关文献

参考文献9

  • 1J Kennedy, R Eberhart. Particle swarm optimization [C]// Proceeding of IEEE International Conference on Neural Networks (ICNN'95), Perth, Western Auslralia, Australia, USA: IEEE, 1995, 4: 1942-1947.
  • 2Wen Zhang, Yutian Lin. Adaptive Particle Swarm Optimization for Reactive Power and Voltage Control in Power Systems [J]. Lecture Notes in Computer Science, LNCS (S0302-9743), 2005, 3612(7): 449-452.
  • 3Chwen-Tzeng Su, Jui-Tsung Wong. Designing MIMO controller by neuro-traveling particle swarm optimizer approach [J]. Expert System with Applications (S0957-4174), 2007, 32(3): 848-855.
  • 4Tae-Hyoung Kim, Ichiro Maruta, Toshiharu Sugie. Robust PID controller tuning based on the constrained particle swarm optimization [J]. Automatica (S0005-1098), 2008, 44(4): 1104-1110.
  • 5Yifeng Niu, Lincheng Shen. An Adaptive Multi-objective Particle Swarm Optimization for Color Image Fusion [J]. Lecture Notes in Computer Science, LNCS (S0302-9743), 2006, 4247(10): 473480.
  • 6Y Shi, R Eberhart. A modified particle swarm optimizer [C]// Proceedings of the IEEE Conference on Evolutionary Computation, Singapore, 1998. USA: IEEE, 1998: 69-73.
  • 7A Chatterjee, P Siarry. Nonlinear inertia weight variation for dynamic adaptation in particle swarm optimization [J]. Computers & Operations Research (S0305-0548), 2006, 33(3): 859-871.
  • 8Jacques Riget, Jakob S Vesterstr. A Diversity-Guided Particle Swarm Optimizer the ARPSO [EB/OL]. (2002) [2008]. www.evalife.dk.
  • 9F van den Bergh, A P Engelbrecht. A study of particle swarm optimization particle trajectories [J]. Information Sciences (S0020-0255), 2006, 176(8): 937-971.

同被引文献52

引证文献5

二级引证文献32

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部