期刊文献+

一种新的基于Slantlet变换的心电信号消噪算法 被引量:2

Novel Denoising Algorithm for Electrocardiogram Signals Based on Slantlet Transform
下载PDF
导出
摘要 心电信号在采集过程中常常掺杂着各种噪声。针对心电信号多突发性与多间断性的特点,采用一种改进的正交离散小波变换——Slantlet变换对其进行消噪处理。由于传统的小波阈值消噪算法在信号中的奇异点处会产生伪Gibbs现象,引入平移不变方法使伪Gibbs现象得到有效的抑制,并利用Slantlet基函数的分片线性的优势,提出一种新的基于信号重采样与圆周平移不变变换的消噪方法。利用美国麻省理工学院的PhysioBank生理信号数据库对以上方法进行验证,实验结果表明该算法能有效地消除噪声并较好地保持心电信号的几何特性。 The electrocardiogram signals (ECG) may be mixed with various kinds of noises while being gathered and recorded. Since ECG signals possess many jumps and abrupt places, the proposed denoising algorithm employs an improved version of orthogonal discrete wavelet transform (DWT) called Slantlet Transform. Traditional wavelet threshold methods may cause Pseudo-Gibbs phenomena on the singular points of the signals. The denoising algorithm of wavelet threshold based on Translation-Invariant was applied to eliminate the phenomenon; furthermore, with the benefit of Slantlet piecewise basis, a novel algorithm based on signal resampling and Cycle-Spinning Translation-lnvariant was proposed. The PhysioBank database of MIT was used to validate the algorithm. Experimental results show that the proposed algorithm can effectively remove noise and well preserve the geometric characteristics of the electrocardiogram signals.
出处 《系统仿真学报》 CAS CSCD 北大核心 2009年第20期6573-6576,共4页 Journal of System Simulation
基金 江西省自然科学基金(2007GQS1906 2007GZS1871)
关键词 Slantlet变换 平移不变 心电信号 消噪算法 Slantlet transform translation-invariant electrocardiogram signals denoising algorithm
  • 相关文献

参考文献17

  • 1Alste J, Schider T S. Removal of Baseline Wander and Powerline Interference from the ECG by an Efficient FIR Filter with a Reduced Number of Taps [J]. IEEE Trans. Biomedical Engineering (S0018-9294), 1985, 32(12): 1052-1060.
  • 2Rampil I. A Primer for EEG Signal Processing in Anesthesia [J]. Anesthesiology (S0003-3022), 1998, 89(4): 980-1002.
  • 3杨丰,岳小荣.基于三次B─样条函数心电图数据滤波[J].北京生物医学工程,1994,13(4):193-196. 被引量:5
  • 4Chui C K. Wavelets: A Tutorial in Theory and Applications [M]. Boston, USA: Academic Press, 1992.
  • 5Benedetto J L, Frazier M W, Wavelets: Mathematics and Applications [M]. Boca Raton, USA: CRC Press, 1994.
  • 6Cohen A, Ryan R D. Wavelets and Multiscale Signal Processing [M]. London, UK: Chapman and Hall, 1995:160-185.
  • 7Mallat S. A Wavelet Tour of Signal Processing [M]. 2nd edition. San Diego, USA: Academic Press, 1998.
  • 8I W Selesnick. The Slantlet Transform [J]. 1EEE Trans. Signal Processing (S1053-587X), 1999, 47(5): 1304-1313.
  • 9Panda G, Dash P K, Pradhan A K, Meher S K. Data Compression of Power Quality Events Using the Slantlet Transform [J]. IEEE Trans. Power Delivery (S0885-8977), 2002, 17(2): 662-667.
  • 10Madhubanti M, Amitava C. A Slanflet Transform Based Intelligent System for Mmagnetic Resonance BraIn Image Classification [J]. Biomedical Signal Processing and Control (S1746-8094), 2006, 1 (4): 299-306.

二级参考文献10

  • 1杨丰,岳小荣.基于三次B─样条函数心电图数据滤波[J].北京生物医学工程,1994,13(4):193-196. 被引量:5
  • 2M L Ahlstrom.W J Tompkins.Digital filters for real-time ECG signal processing using microprocessors[J].IEEE Transaction on Biomedical engineering,1985,32(9):708—713.
  • 3Patrick S Hamilton,Willis J Tompkins.Quantitative inverstigation of QRS detection rules using the MIT/BIH arrhythmia database[J].IEEE Transaction on Biomedical engineering,1986,33(12):1157—1165.
  • 4David L Donoho, Lain M Johnstone. Ideal spatial adaptation by wavelet shrinkage[J]. Biometrika, 1994,81,3:425 - 455.
  • 5Stephane G Mallat. A theory for multiresolution signal decomposition:the wavelet representation [ J ]. IEEE Transaction on PAMI., 1989, 11(7) : 674 - 693.
  • 6G P Nason, B W Silverman. The stationary wavelet transform and some statistical applications in wavelet and statistics, Lecture notes in statistics[ M]. Spinger Verlag, 1995. 281 - 299.
  • 7Pan J,IEEE Trans BME,1985年,32卷,230页
  • 8ALSTE J, SCHIDER T S. Removal of baseline wander and powerline interference from the ECG by an efficient FIR filter with a reduced number of taps[J]. IEEE Trans Biomed Eng, 1985,32(12):1052-1060.
  • 9MALLAT S, HWANG L. Singularity detection and processing with wavelet[J]. IEEE Trans on IT, 1992,38(2):617-643.
  • 10李光林,吕维雪.基于小波变换的心电信号的分析与处理[J].浙江大学学报(自然科学版),1998,32(1):82-87. 被引量:14

共引文献76

同被引文献22

  • 1刘少颖,卢继来,郝丽,胡广书.基于数学形态学和小波分解的QRS波群检测算法[J].清华大学学报(自然科学版),2004,44(6):852-855. 被引量:19
  • 2张勤,崔丽.基于DWT的一种数字水印算法[J].北京师范大学学报(自然科学版),2015,51(1):19-22. 被引量:21
  • 3Josko Adam. Evaluation of the QRS Complex Wavelet Based Detection Algorithm [J]. Przeglad Elektrotechniezny (S0033-2097). 2011, 87(5): 66-70.
  • 4Saurabh Pal, Madhuchhanda Mitra. Detection of ECG Characteristic Points Using Multiresolution Wavelet Analysis Based Selective Coefficient Method [J]. Measurement (S0263-2241), 2010, 43(2): 255-261.
  • 5Sasikala P, Wahidabanu R S D. Robust R Peak and QRS Detection in Electrocardiogram Using Wavelet Transform [J]. International Journal of Advanced Computer Science and Applications ($2158-107X), 2010, 1(6): 48-53.
  • 6J Pan, W J Tompkins. A Real Time QRS Detection Algorithm [J]. IEEE Transactions on Biomedical Engineering (S0018-9294), 1985, 32(3): 230-236.
  • 7Q Xue, Y H Hu, W J Tompkins. Neural-network-based Adaptive Filtering for QRS Detection [J]. IEEE Transactions on Biomedical Engineering (S0018-9294), 1992, 39(4): 315-329.
  • 8A Ghaffari, H Golbayani, M Ghasemi. A New Mathematical Based QRS Detector Using Continuous Wavelet Transform [J]. Computers & Electrical Engineering (S0045-7906), 2008, 34(2): 81-91.
  • 9Merah Mostefa, Ouamri Abdelazziz, Nait-Ali Amine. Fault Tolerant Neural Network for ECG Signal Classification Systems [J]. Advances in Electrical and Computer Engineering (S15827445), 2011, 3(11): 17-24.
  • 10F Zhang, Y Lian. QRS Detection Based on Multi-scale Mathematical Morphology for Wearable ECG Device in Body Area Networks [J]. IEEE Transactions on Biomedical Circuits and Systems (S 1932-4545), 2009, 3(4): 220-228.

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部