期刊文献+

基于边际的信息检索排序算法研究 被引量:5

Research on margin-based IR ranking algorithm
下载PDF
导出
摘要 系统地分析RLR算法模型的优缺点,证明阶铰链亏损函数是凸函数,且满足2/2≥,变换模型框架中的亏损函数,采用减少上下界差距的策略选取参数,由证明阶铰链亏损函数满足+<2+进而得到新的算法。实验结果表明,该算法是有效的,最后讨论可继续研究的课题。 The advantages and disadvantages of RLR algorithm framework are systematically analyzed. It is proved thatp-order hinge loss fimction is convex and satisfies 2L(x/2) ≥ L(x). A new algorithm is obtained by shifting loss function, choosing a to minimize the gaps between the lower bound and the upper bound and proving thatp-order hinge loss function satisfies L(x)+L(-x)〈(2+|x|)^p. Experiments show that the new algorithm is effective and future research to be carried out is also discussed.
出处 《计算机工程与设计》 CSCD 北大核心 2009年第20期4636-4638,共3页 Computer Engineering and Design
基金 云南省自然科学基金重点项目(04F00062)
关键词 信息检索 排序 基于边际 阶铰链亏损函数 RLR算法 information retrieval ranking margin-based p-order hinge loss fianction RLR algorithm
  • 相关文献

参考文献14

  • 1Boldi P, Santinim,Vigna S.PageRank as a function of the damping factor [C]. Proceedings of the 14th Conference on World Wide Web,2005:557-566.
  • 2Borodin A,Roberts G,Rosenthal J,et al.Link analysis ranking:Algorithms, theory, and experiments [J]. ACM Trans Inter Tech, 2005,5(1):231-297.
  • 3Nallapati R.Discriminative models for information retrieval[C]. Proceedings of the 27th SIGIR Conference on Information Retrieval,2004:64-71.
  • 4Cynthia R,Robert E,Ingrid D.Boosting based on a smooth margin[C].Proceedings of the 16th Annual Conference on Computational Learning Theory,2004:502-517.
  • 5Joachims T.Optimizing search engines using elickthrough data [C].Proceedings of the 8th ACM SIGKDD Intl Conference on Knowledge Discovery and Data Mining.New York,USA:ACM Press,2002:133-142.
  • 6Burges C. Learning to rank using gradient descent [C]. Proceedings of the 22nd Intl Conference on Machine Learning,2005: 89-96.
  • 7Chua T S,Neo S Y, Goh H K,et al.Trecvid 2005 by nus pris[C]. NIST TRECVID,2005.
  • 8Hastie T, Tibshirani R, Friedman J. The elements of statistical leaming[M].Basel:SprJnger Series in Statistics,Springer Verlag, 2001.
  • 9Rong Y, Alexander, Hauptmann D. Efficient margin-based rank learning algorithms for information retrieval [J]. CIVR, 2006: 113-122.
  • 10Zhang T. Statistical behavior and consistency of classification methods based on convex risk minimization [J]. Annals Statis, 2004(32):56-85.

同被引文献61

  • 1曾莉红.基于点击率的全文数据库检索结果组织方法探讨[J].情报杂志,2007,26(6):106-107. 被引量:5
  • 2Cynthia R. The P-Norm Push: A simple convex ranking algorithm that concentrates at the top of the list[J]. Journal of Machine Learning Research, 2009 (10) :2233-2271.
  • 3Rong Y, Alexander, Hauptmann D. Efficient margin-based rank learning algorithms for information retrieval[J]. CIVR, 2006 (4071 ):113-122.
  • 4Bousquet O ,Elisseeff A. Stability and generalization[J]. Journal of Machine Learning Research. 2002(2) :499-526.
  • 5Kutin S,Niyogi P. Almost-everywhere algorithmic stability and generalization error[C]//In:Proceedings of the 18th Conference on Uncertainty in Artificial Intelligence. Edmonton, Alberta, Canada:Stanford University, 2002.
  • 6Kutin S ,Niyogi P. The interaction of stability and weakness in AdaBoost[R]. Chicago:University of Chicago ,2001.
  • 7Agarwal S,Niyogi P. Stability and generalization of bipartite ranking algorithms[G]//In proceedings of the 18th Annual Conference on Learning Theory. Bertinoro, Italy, Publisher: Springer, 2005 : 32-47.
  • 8Agarwal S, Niyogi P. Generalization bounds for ranking algorithms via algorithmic stability[J]. Journal of Machine Learning Research, 2009 (10): 441-474.
  • 9Felipe C, Ding-Xuan Z. Learning Ttheory:An Approximation Theory Viewpoint[M], Cambridge:Cambridge University Press, 2007.
  • 10AGARWAL S,NIYOGI P. Stability and generalization of bipartite ranking algorithms[C]. In proceedings of the 18th Annual Conference on Learning Theory,2005.

引证文献5

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部