摘要
应用Man偄sevich-Mawhin重合度定理,研究了形如:(φp(x′(t)))′+f(x(t-τ(t)))x′(t-σ(t))+β(t)g(x(t-γ(t)))=e(t),的多偏差带有p-Laplace算子的Li啨nard类型微分方程,得到了一个关于周期解存在性的结果,本文具有意义是系数β(t)可以变号,并且以一个例子来说明本文的结果.
By using Manásevich-Mawhin continuation theorem,a class of p-Laplacian Liénard type differential equation with multiple deviating arguments of the form
(φp(x′(t)))′+f(x(t-τ(t)))x′(t-σ(t))+β(t)g(x(t-γ(t)))=e(t),
is studied.And a result about the existence of periodic solutions is obtained.The significance of this article is that the coefficient β(t) is allowed to change sign,and an example is given to illustrate the result.
出处
《安徽师范大学学报(自然科学版)》
CAS
北大核心
2009年第5期415-419,共5页
Journal of Anhui Normal University(Natural Science)
基金
Supported by the NSF of Anhui Province of China(2005kj031ZD
050460103)
the Teaching and Research Award Program for Excellent Teachers in Higher Education Institutions of Anhui Province of China
the key NSF of Education Ministry of China(207047).
关键词
周期解
重合度定理
多偏差项
periodic solutions
continuation theorem
multiple deviating arguments