期刊文献+

一类多偏差Liénard类型p-Laplace微分方程的周期解(英文) 被引量:2

Periodic Solutions for p-Liénard Type Differential Equation with Multiple Deviating Arguments
下载PDF
导出
摘要 应用Man偄sevich-Mawhin重合度定理,研究了形如:(φp(x′(t)))′+f(x(t-τ(t)))x′(t-σ(t))+β(t)g(x(t-γ(t)))=e(t),的多偏差带有p-Laplace算子的Li啨nard类型微分方程,得到了一个关于周期解存在性的结果,本文具有意义是系数β(t)可以变号,并且以一个例子来说明本文的结果. By using Manásevich-Mawhin continuation theorem,a class of p-Laplacian Liénard type differential equation with multiple deviating arguments of the form (φp(x′(t)))′+f(x(t-τ(t)))x′(t-σ(t))+β(t)g(x(t-γ(t)))=e(t), is studied.And a result about the existence of periodic solutions is obtained.The significance of this article is that the coefficient β(t) is allowed to change sign,and an example is given to illustrate the result.
出处 《安徽师范大学学报(自然科学版)》 CAS 北大核心 2009年第5期415-419,共5页 Journal of Anhui Normal University(Natural Science)
基金 Supported by the NSF of Anhui Province of China(2005kj031ZD 050460103) the Teaching and Research Award Program for Excellent Teachers in Higher Education Institutions of Anhui Province of China the key NSF of Education Ministry of China(207047).
关键词 周期解 重合度定理 多偏差项 periodic solutions continuation theorem multiple deviating arguments
  • 相关文献

参考文献7

  • 1MANASEVICH Raul, MAWHIN Jean. Periodic solutions for nonlinear systems with p-Laplacianlike operations [J ]. J Differential Equations, 1998,145:367 - 393.
  • 2LU Shi-ping, GE Wei-gao. Periodic solutions for a kind of second order differential equation with multiple deviating arguments [J ]. Applied Mathematics and Computation, 2003,146:195 -209.
  • 3LU Shi-ping. Existence of periodic solutions to p-Laplacian Lienard differential equation with a deviating argument [J ]. Nonlinear Analysis, 2007,doi: 10. 1016/j. na. 2006.12. 041.
  • 4LU Shi-ping. New results on the existence of periodic solutions to a p-Laplacian Lienard differential equation with a deviating argument [J]. J Math Anal Appl, 2007,336:1107 - 1123.
  • 5CHENUG Wing-sun, REN Jing-li. On the existence of periodic solutons for p-laplacian generalized Lienard equation [J]. Nonlinear Analysis, 2005,60: 65 - 75.
  • 6LU Shi-ping, GUI Zhan-jie. On the existence of periodic solutions to p-Laplacian Rayleigh differential equation with a delay [J]. J Math Ananal Appl, 2007,325 : 685 - 702.
  • 7MEI Shang, LU Shi-ping. Periodic solutions for a kind of Dulling equation with a delay [J]. Jounal of Anhui Normal University: Natural Science, 2007,30(4) :425 - 428.

同被引文献11

  • 1Wing-Sum Cheung, Jingli Ren. Periodic solutions for p- Laplacian Lienard equation with a deviating argument[J].Nonlinear Analysis,2004, 59:107-120.
  • 2Wing-Sum Cheung, Jingli Ren. On the existence of Periodic solutions for p- Laplacian generalized Lienard equation[J]. Nonlinear Analysis, 2005,60 : 65- 75.
  • 3Wing-Sum Cheung, Jingli Ren. Periodic solutions for p- Laplacian Rayleigh equations[J]. Nonlinear Analysis,2006,65..2003-2012.
  • 4Shiguo Peng, Siming Zhu. Periodic solutions for p- Laplaeian Rayleigh equations with a deviating argument[J]. Nonlinear Analysis,2007,67: 138-146.
  • 5Shiping Lu. Existence of periodic solutions to p-Laplacian equation with a deviating argument[J]. Nonlinear Analysis. ,2008,68:1453-1461.
  • 6Fabao Gao, Shiping Lu, Wei Zhang. Periodic solutions for p-Laplacian neutral Lienard equation with a sign-variable coefficient [-J']. NonlinearAnalysis, 2009,70 : 2072- 2077.
  • 7Shiping Lu, Weigao Ge, Zuxiu Zheng. Periodic solutions to neutral differential equation with deviating arguments[J]. Appl. Math. Comput, 2004,152:17-27.
  • 8Hale J K. Theory of Functional Differential Equations[M]. New York:Springer-Verlag, 1997.
  • 9Gaines R E, Mawhin J L. Coincidence degree and nonlinear differential equation[M]. New York: Springer-Verlag, 1997.
  • 10彭世国.具有偏差变元的p-Laplacian中立型Liénard方程的周期解[J].数学年刊(A辑),2008,29(5):617-626. 被引量:8

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部