期刊文献+

基于正态反高斯先验模型的小波去噪算法 被引量:1

Research of Wavelet-Based Image Denoising with the Normal Inverse Gaussian Prior
下载PDF
导出
摘要 提出了一种基于正态反高斯先验模型(NIG)的小波去噪算法.将小波系数建模为正态反高斯分布,利用矩估计法计算每个子带内的模型参数;在贝叶斯最大后验概率估计(MAP)准则下推导出与NIG模型相对应的阈值函数表达式,以此对图像进行去噪处理.实验结果表明:该算法与经典的阈值去噪算法相比,具有更好的信噪比和视觉效果. A wavelet denoising method based on the normal inverse Gaussian prior (NIG) has been proposed in this paper. The statistics of wavelet coefficients are described by NIG model, and the model parameteres are obtained by utilizing the moment estimator. Under the rule of Bayesian maximum a posteriori (MAP), shrink thresholding function is deduced, which is applied to image noise reduction. Experimental results demonstrate that compared with the classical algorithms, the proposed denoising method has significantly increased peak signal-to- noise ratio (PSNR) and improved the quality of subjective visual effect.
出处 《中南民族大学学报(自然科学版)》 CAS 2009年第3期85-89,共5页 Journal of South-Central University for Nationalities:Natural Science Edition
基金 国家自然科学基金资助项目(60972081) 湖北省自然科学基金资助项目(2007ABA106)
关键词 正交小波变换 正态反高斯先验模型 矩估计法 模型参数 orthogonal wavelet transform normal inverse Gaussian prior model moment estimator parameteres of model
  • 相关文献

参考文献14

  • 1谢杰成,张大力,徐文立.小波图象去噪综述[J].中国图象图形学报(A辑),2002,7(3):209-217. 被引量:254
  • 2Mallat S. A theory for multiresolution signal decomposition: The wavelet representation[J]. IEEE Trans Pattern Analysis and Machine Intelligence, 1989, 11 (7) : 674-693.
  • 3Chang S G, Yu B, Vetterli M. Adaptive wavelet thresholding for image denoising and compression [J]. IEEE Trans Image Processing, 2000, 9(9): 1 532-1 546.
  • 4Chipman H A, Kolaczyk E D , McCulloeh R E. Adaptive Bayesian Wavelet Shrinkage[J]. Journal of the American Statistics Association, 1997, 92 (12) : 1 413-1 421.
  • 5Crouse M S, Nowak R D , Baraniuk R G. Waveletbased statistical signal processing using hidden Markov models [J]. IEEE Trans Signal Processing, 1998, 46 (4): 886-902.
  • 6Simoncelli E P. Modeling the joint statistics of images in the wavelet domain [J]. Proceedings of SPIE, 1999, 3 813: 188-195.
  • 7Bhuiyan M I H. Spatially adaptive thresholding in wavelet domain for despeckling of ultrasound images [J]. IET Image Processing,2009,3(3) : 147-162.
  • 8Bhuiyan M I H. Wavelet-based image denoising with the normal inverse Gaussian prior and linear MMSE estimator [J]. IET image Processing, 2008, 12 (4): 207.
  • 9Pizuriea A,Philips W. Estimating the probability of the presence of a signal of interest in multiresolution single- and multiband image denoising [J]. IEEE Trans,2006,15(3) : 657-658.
  • 10Bhuiyan M I H, M. Omair Ahmad. Wavelet-based denoising of medical ultrasound images with the symmetric normal inverse Gaussian prior[J]. IEEE International Conference on Acoustics, Speech and Signal Processing,2007,1(4) : 1 721-1 724.

二级参考文献66

  • 1[9]You Yuli, Kaveh D. Fourth-order partial differential equations for noise removal[J]. IEEE Trans. Image Processing, 2000,9(10):1723~1730.
  • 2[10]Bouman C, Sauer K. A generalized Gaussian image model of edge preserving map estimation[J]. IEEE Trans. Image Processing, 1993,2(3):296~310.
  • 3[11]Ching P C, So H C, Wu S Q. On wavelet denoising and its applications to time delay estimation[J]. IEEE Trans. Signal Processing,1999,47(10):2879~2882.
  • 4[12]Deng Liping, Harris J G. Wavelet denoising of chirp-like signals in the Fourier domain[A]. In:Proceedings of the IEEE International Symposium on Circuits and Systems[C]. Orlando USA, 1999:Ⅲ-540-Ⅲ-543.
  • 5[13]Gunawan D. Denoising images using wavelet transform[A]. In:Proceedings of the IEEE Pacific Rim Conference on Communications, Computers and Signal Processing[C]. Victoria BC,USA, 1999:83~85.
  • 6[14]Baraniuk R G. Wavelet soft-thresholding of time-frequency representations[A]. In:Proceedings of IEEE International Conference on Image Processing[C]. Texas USA,1994:71~74.
  • 7[15]Lun D P K, Hsung T C. Image denoising using wavelet transform modulus sum[A]. In:Proceedings of the 4th International Conference on Signal Processing[C]. Beijing China,1998:1113~1116.
  • 8[16]Hsung T C, Chan T C L, Lun D P K et al. Embedded singularity detection zerotree wavelet coding[A].In:Proceedings of IEEE International Conference on Image Processing[C]. Kobe Japan, 1999:274~278.
  • 9[17]Krishnan S, Rangayyan R M. Denoising knee joint vibration signals using adaptive time-frequency representations[A]. In:Proceedings of IEEE Canadian Conference on Electrical and Computer Engineering 'Engineering Solutions for the Next Millennium[C]. Alberta Canada, 1999:1495~1500.
  • 10[18]Liu Bin, Wang Yuanyuan, Wang Weiqi. Spectrogram enhancement algorithm: A soft thresholding-based approach[J]. Ultrasound in Medical and Biology, 1999,25(5):839~846.

共引文献253

同被引文献14

  • 1Lee J S. Refined filtering of image noise using local statistics[ J ]. Computer graphics and image processing, 1981, 15(4) : 380-389.
  • 2Kuan D T, Sawchuk A A, Strand T C, et al. Adaptive noise smoothing filter for images with signal-dependent noise [ J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1985 (2): 165-177.
  • 3Kuan D T, Sawchuk A, Strand T C, et al. Adaptive restoration of images with speckle [ J ]. IEEE Transactions on Acoustics, Speech and Signal Processing, 1987, 35(3): 373-383.
  • 4Lopes A, Nezry E, Touzi R, et al. Structure detection and statistical adaptive speckle filtering in SAR images [ J]. International Journal of Remote Sensing, 1993, 14 (9) : 1735-1758.
  • 5Donoho D L. Ideal spatial adaptation via wavelet shrin- kage [ J ]. Biometrica, 1994, 81 : 424-455.
  • 6Argenti F, Lapini A, Bianchi T, et al. A tutorial on speckle reduction in synthetic aperture radar images [ J ].IEEE Geoscience and Remote Sensing Magazine, 2013, 1(3) : 6-35.
  • 7Xie H, Pierce L E, Ulaby F T. SAR speckle reduction using wavelet denoising and Markov random field modeling [ J ]. IEEE Transactions on Geoscience and Remote Sensing, 2002, 40(10): 2196-2212.
  • 8Achim A, Tsakalides P, Bezerianos A. SAR image denoising via Bayesian wavelet shrinkage based on heavy-tailed modeling [ J ]. IEEE Transactions on Geoscience and Remote Sensing, 2003, 41 (8): 1773-1784.
  • 9Jian-Hua Hou, Xiang-Ming Liu, Cheng-Yi Xiong, Xiang He. Speckle reduction algorithm for synthetic aperture radar images based on Bayesian maximum a posteriori estimation in wavelet domain [ J ]. Optical Engineering, 2008, 47 (5) : 057004-1 -- 057004-11.
  • 10Pizurica A, Philips W, Lemahieu I, et al. Despeckling SAR images using wavelets and a new class of adaptive shrinkage estimators [ C ]//IEEE. Proceedings of International Conference on Image Processing. San Francisco: IEEE, 2001,2: 233-236.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部