期刊文献+

避免奇异解联合对角化的两种高效算法

Two efficient algorithms for joint diagonalization with exception of the singular solution
下载PDF
导出
摘要 针对避免奇异解的联合对角化算法计算量大的问题,提出两种改进的高效算法.在第一种改进算法中,将对角化矩阵行列式按当前更新的列展开,从而避免了计算行列式过程中的矩阵求逆.另一种改进算法将列交换后的对角化矩阵进行QR分解,由分解得到的上三角矩阵计算对角化矩阵的行列式.由于两种改进算法减少了一次矩阵求逆,因此降低了原算法的计算量.仿真结果表明,当目标矩阵个数和维数较大时,两种改进算法的计算量分别为原算法的18.9%和13.5%. Two improved efficient algorithms are proposed to reduce the computational load for nonorthogonal joint diagonalization free of singular solutions. In the first improved algorithm, the determinate of the diagonalization matrix is expanded by its current updating column to avoid matrix inverse operation in this computational phase. The other improved algorithm is developed by QR factorization of the column exchanged diagonalization matrix, whose determinate is computed by the product of the diagonal elements of the resulting upper triangular matrix. As a result, the improved algorithms exhibit a low computational load since both of them reduce one matrix inverse operation in comparison to the original one. Finally, numerical simulation results show that the two improved algorithms have a computational load equal to 18.9% and 13.5% that of the original algorithm when the objective matrices are of large dimension and number.
出处 《西安电子科技大学学报》 EI CAS CSCD 北大核心 2009年第5期857-861,共5页 Journal of Xidian University
基金 国家自然科学基金资助(60775013)
关键词 联合对角化 最小二乘标准 QR分解 盲信源分离 代数余子式 joint diagonalization least-squares criteria QR factorization blind source separation algebraic cofaetor
  • 相关文献

参考文献10

  • 1Moreau E. A Generalization of Joint Diagonalization Criteria for Source Separation[J]. IEEE Trans on Signal Processing, 2001, 49(3): 530-541.
  • 2Belouchrani A, Meraim K, Cardoso J F, et al. A Blind Source Separation Technique Using Second-order Statistics [J]. IEEE Trans on Signal Processing, 1997, 45(2): 434-444.
  • 3Degerine S, Kane E. A Comparative Study of Approximate Joint Diagonalization Algorithms for Blind Source Separation in Presence of Additive Noise [J]. IEEE Trans on Signal Processing, 2007, 55(6): 3022-3031.
  • 4张伟涛,楼顺天,张延良.具有等变化性的最小二乘盲信源分离方法[J].西安电子科技大学学报,2008,35(6):999-1002. 被引量:3
  • 5CardosoJ F, Souloumiac A. Blind Beamforming for Non Gaussian Signals[J]. Proc Inst Elect Eng F, 1993, 140(6): 362-370.
  • 6Yeredor A. Non-orthogonal Joint Diagonalization in the Least-squares Sense with Application in Blind Source Separation [J]. IEEE Trans on Signal Processing, 2002, 50(7):1545-1553.
  • 7Vollgraf R, Obermayer K. Quadratic Optimization for Simultaneous Matrix Diagonalization[J]. IEEE Trans on Signal Processing, 2006, 54(9):3270-3278.
  • 8Li X L, Zhang X D. Nonorthogonal Joint Diagonalization Free of Degenerate Solution [J]. IEEE Trans on Signal Processing, 2007, 55(5): 1803-1814.
  • 9Pham D T. Joint Approximate Diagonalization of Positive Definite Hermitian Matrices [J]. SIAM J Matrix Anal Appl, 2001, 22(4):1136-1152.
  • 10Yeredor A. On Using Exact Joint Diagonalization for Noniterative Approximate Joint Diagonalization [J]. IEEE Signal Processing Letters, 2005, 12(9): 645-648.

二级参考文献9

  • 1Aamri S, Cichocki A. Adaptive Blind Signal Processing-Neural Network Approaches [J]. Proceeding of the IEEE, 1998, 86(10): 2026-2048.
  • 2Yang H H, Amari S. Adaptive On-Line Learning Algorithms for Blind Separation-Maximum Entropy and Minimum Mutual Information [J]. Neural Computation. 1997, 9(1) : 1 457-1 482.
  • 3Cardoso J F, Laheld H. Equivariant Adaptive Source Separation [J]. IEEE Trans on Signal Processing, 1996, 44 (2): 3 017-3 029.
  • 4Karhunen J, Pajunen P. Blind Source Separation Using Least-Squares Type Adaptive Algorithms [C]// IEEE Conf on Acoustic and Speech Signal Processing 1997. San Diego: IEEE, 1997:3 361-3 364.
  • 5Karhunen J, Pajunen P, Oja E. The Nonlinear PCA Criterion in Blind Source Separation: Relations with other Approaches [J]. Neurocomputing, 1998, 22(1): 5-20.
  • 6Zhu X L, Zhang X D. Adaptive RLS Algorithm for Blind Source Separation Using a Natural Gradient[J]. IEEE Signal Processing Letters, 2002, 9(12): 432-435.
  • 7Manton J H. Optimization Algorithms Exploiting Unitary Constraints [J]. IEEE Trans on Signal Processing, 2002, 50 (3) : 635-650.
  • 8Yang B. Projection Approximation Subspace Tracking [J]. IEEE Trans on signal Processing, 1995, 43(1): 95-107.
  • 9Joho M, Rahbar K. Joint Diagonalization of Correlation Matrices by Using Newton Methods with Application to Blind Signal Separation [C]//Sensor Array and Multiehannel Signal Processing Workshop Proceedings. Rosslyn: IEEE, 2002: 403-407.

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部