期刊文献+

一种代数正规形快速变换的零化子算法 被引量:2

Research on finding annihilators of Boolean functions based the algebraic normal form fast transformations
下载PDF
导出
摘要 利用布尔函数代数正规形的性质提出一种代数正规形快速变换和计算方法,该方法具有最小的存储空间和很高的计算效率.以此为基础,提出两种计算布尔函数零化子的有效算法:第1种算法可以求出所有n元布尔函数的代数免疫阶数和最低次零化子的代数正规形表达式;第2种算法能够求出任意一个n元平衡布尔函数代数免疫阶数和所有不超过d次的零化子.同已有基于求解线性同余方程组的零化子求解算法相比,该方法可操作性强,能够更加有效地用于评估布尔函数抵抗代数攻击的强度. The algebraic normal form fast transfermations (ANFFTs) and computing methods are proposed by using the properties of Boolean Function's algebraic normal form, which has the smallest memory and higher efficiency. Under the previous assumption, two efficient algorithms for computing the annihilators of Boolean functions are presented. The first algorithm can be used to find the algebraic immunity of Boolean functions on n-variables and the algebraic normal form of the annihilators with the lowest algebraic degree. The second algorithm can be used to compute the algebraic immunity of a balanced Boolean functions on n-variables and its annihilators which have the algebraic degree~ d. Compared with the algorithms for computing the annihilators by solving linear congruential equations, these methods are highly operable and can be used to assess more effectively the resistance of Boolean functions against algebraic attacks.
出处 《西安电子科技大学学报》 EI CAS CSCD 北大核心 2009年第5期890-895,共6页 Journal of Xidian University
基金 国家自然科学基金资助(60603010) 国家"973"项目资助(2007CB311201) 国家自然科学基金资助(60673068)
关键词 代数攻击 布尔函数 代数正规形快速变换 零化子 代数免疫 algebraic attacks Boolean functions algebraic normal form fast transformations annihilators algebraic immunity
  • 相关文献

参考文献11

  • 1Courtois N, Meier W. Algebraic Attacks on Stream Ciphers with Linear Feedback[C]//Advances in Cryptology- EUROCRYPT 2003, Number 2656 in Lecture Notes in Computer Science. Berlin: Springer Verlag, 2003:345-359.
  • 2Carlet C, Dalai D, Gupta K, et al. Algebraic Immunity for Cryptographically Significant Boolean Functions: Analysis and Construction[J]. IEEE Trans on Information Theory, 2006, 52(7) : 3105-3121.
  • 3Armknecht F. Improving Fast Algebraic Attacks[C]//FSE 2004, Number 3017 in Lecture Notes in Computer Science. Berlin: Springer Verlag, 2004: 65-82.
  • 4Braeken A, Lano J, Preneel B. Evaluating the Resistance of Filtersand Combiners Against Fast Algebraic Attacks[EB/ OL]. [-2008-12-20]. http://eprint, iacr. org, 2005/276.
  • 5Sun Bin, Qu Longjiang, Li Chao. New Cryptanalysi of Block Cipher with Low Algebraic Degree[C]//FSE 2009, Lecture Notes in Computer Science. Berlin: Springer Verlag, 2009: 183-195.
  • 6Albrecht M, Cid C. Algebraic Techniques in Differential Cryptanalysi[C]//FSE 2009, Lecture Notes in Computer Science. Berlin: Springer Verlag, 2009: 196-210.
  • 7陈杰,胡予濮,韦永壮.一种快速构造降次函数的新算法[J].西安电子科技大学学报,2005,32(5):790-793. 被引量:5
  • 8Qu L J, Li C, Feng K Q. A Note Symmetric Boolean Functions with Maximum Algebraic Immunity on Odd Number of Variables[J]. IEEE Trans on Information Theory, 2007, 53(8): 2908-2910.
  • 9Dalai D K, Maitra S. Reducing the Number of Homogeneous Linear Equations in Finding Annihilators[C]//Sequences and Their Applications--SETA2006, LNCS, 4086. Heidelberg: Springer, 2006: 376-390.
  • 10Armknecht F, Carlet C, Gaborit P, et al. Efficient Computation of Algebraic Immunity for Algebraic and Fast Algebraic Attacks[C]//The Proceedings of EUROCRYPT 2006, LNCS 3029. Berlin: Springer, 2006: 274-290.

二级参考文献1

共引文献4

同被引文献18

  • 1张文英,武传坤,于静之.密码学中布尔函数的零化子[J].电子学报,2006,34(1):51-54. 被引量:16
  • 2徐春霞,陈卫红,张凤芹.布尔函数零化子的构造及其在流密码中的应用[J].信息工程大学学报,2006,7(2):125-127. 被引量:3
  • 3冀会芳,明永涛,刘文芬.利用特征矩阵求布尔函数的零化子[J].信息工程大学学报,2007,8(1):49-52. 被引量:1
  • 4Coppersmith D, Krawczyk H, Mansour Y. The Shrinking Generator[C]//Advanced in Cryptology-CRYPT'93: LNCS 765. Berlin: Springer-Verlag, 1994: 22-39.
  • 5Meier W, Staffelbach O. The Self-Shrinking Generator [C] //Advanced in Cryptology-Eurocrypt'94: LNCS 905. Berlin: Springer-Verlag, 1994: 205-214.
  • 6Kanso A. Modified Self-shrinking Generator[J]. Computers & Electrical Engineering, 2010, 36(5): 993-1001.
  • 7Hu Yupu, Xiao Guozhen. The Generalized Self-shrinking Generator[J]. IEEE Trans on Information Theory, 2004, 50 (4) : 714-719.
  • 8Fuster-Sabater A, Caballero-Gil P. Analysis of the Generalized Self-shrinking Generator[J]. Computers & Mathematics with Applications, 2011, 61(4): 871-880.
  • 9Zhang Bin, Wu Hongjun, Feng Dengguo, et al. Security Analysis of the Generalized Self-shrinking Generator [C] // ICICS'04: LNCS 3269. Berlin: Springer-Verlag, 2004: 388-400.
  • 10Hell M, Johansson T, Brynielsson L. An Overview of Distinguishing Attacks on Stream Ciphers[J]. Cryptography and Communications, 2009, 1(1): 71-94.

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部