期刊文献+

可换环上严格上三角矩阵代数的若当导子

Jordan Derivation of Algebra of Strictly upper Triangular Matrices over Commutative Rings
下载PDF
导出
摘要 令R是含有单位元1且2为其可逆元的可换环,M(n,R)表示R上所有n×n阶矩阵形成的代数,N(n,R)表示R上所有严格上三角矩阵所形成的M(n,R)的子代数.本文具体刻画了N(n,R)上的任一若当导子,即N(n,R)的每一个若当导子均可被唯一地分解为内导子、对角导子和中心导子之和. Let R be a 2-torsion free commutative ring with identity, and let M(n, R) be the matrix algebra of all n by n matrices over R, N(n, R) the subalgebra of M(n, R) consisting of all strictly upper triangular matrices. Gives an explicit description of any Jordan derivation ofN(n, R).
作者 卜树红 张栋
出处 《江汉大学学报(自然科学版)》 2009年第3期5-7,共3页 Journal of Jianghan University:Natural Science Edition
关键词 可换环 三角矩阵代数 若当导子 commutative rings triangular matrix algebra Jordan derivation
  • 相关文献

参考文献4

  • 1BENKOVIC D. Jordan derivations and antiderivations on triangular matrices [J]. Linear Algebra Appl, 2005,397: 235-244.
  • 2WANG D Y, OU S K, YU Q. Derivation of the intermediate Lie algebras between the Lie algebra of diagonal matrices and that of upper triangular matrices over a commutative ring[J]. Linear and Multilinear Algebra, 2006,54: 369-377.
  • 3WANG X T, YOU H. Decomposition of Jordan automor- phisms of strictly triangular matrix algebra over local rings [J]. Linear Algebra Appl, 2004,392:183-193.
  • 4BEIDAR K I, BRESAR M, CHEBOTAR M A. Jordan automorphisms of triangular matrix algebra over a connected commutative ring[J]. Linear Algebra Appl,2000,312: 197- 201.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部