期刊文献+

海森伯格XXZ模型的热纠缠 被引量:3

Thermal Entanglement of Heisenberg XXZ Model
下载PDF
导出
摘要 负值度(Negativity)是一种通用的纠缠度量,可方便地计算两体量子系统的纠缠度.利用负值度研究了两量子比特各向异性海森伯格XXZ模型的热纠缠,讨论了在热平衡时温度和外加磁场对热纠缠的影响.当温度小于临界温度时,热纠缠的大小依赖于外加磁场的强弱;当温度大于临界温度时,纠缠消失. Negativity is an universal entanglement measure. The entanglement of two-party quantum system can be easily calculated with negativity. The thermal entanglement in the two qubit anisotropic Heisenberg XXZ model is studies by means of Negativity. The influence of temperature Tand an external magnetic field B on the entanglement is investigated in thermal equilibrium. When the temperature is less than an critical temperature Tc, the thermal entanglement is depended on the magnetic field strength, otherwise the entanglement disappears.
作者 刘思平
出处 《江汉大学学报(自然科学版)》 2009年第3期33-35,39,共4页 Journal of Jianghan University:Natural Science Edition
关键词 海森伯格模型 负值度 热纠缠 Heisenbergmodel negativity thermal entanglement anisotropy
  • 相关文献

参考文献11

  • 1NIELSEN M A, CHUANG I L. Quantum computation and quantum information[M]. Cambridge: Cambridge University, 2000.
  • 2EKERT A K. Quantum cryptography based on Bell's theoren[J]. Phys Rev Lett, 1991, 67(6): 661-663.
  • 3BENNETT C H, GTLLES B, CLAUDE C, et al. Teleporting an unknown quantum state vta dual classcal and Einstem-podolsky-Rosenchannels[J]. Phys Rev Lett, 1993,70:1895-1899.
  • 4BENNETT C H, DIVINCENZO D E Quantum information and computation[J]. Nature, 2000, 404: 247-255.
  • 5ARNESEN M C, BOSE S, VEDRAL V. Natural thermal and magnetic entanglement in the 1D Heisenberg model[J]. Plays Rev Lett, 2001, 87: 017901-017904.
  • 6WANG X G. Entanglement in the Quantum Heisenberg XY model[J]. Phys Rev A, 2001, 64: 012313-012319.
  • 7PERES A. Separability criterion for density matrices [J]. Phys Rev Lett, 1996, 77: 1413-1415.
  • 8HORODECKI M, HORODECKI P, HORODECKI R. Separability of mixed states: necessary and sufficient condition[J]. Phy Lett A, 1996, 223:1-8.
  • 9VIDAL G, WERNER R F. A computable measure of entanglement[J]. Phys Rev A, 2002, 65:032314-032324.
  • 10ZYCZKOWSKI K, HORODECKI P, SANPERA A, et al. Volume of the set of separable states[J]. Phys Rev A ,1998, 58: 883-892.

同被引文献32

  • 1BENNETT C H, BRASSARD G, CREPEAU C, et al. Teleporting an unknown quantum state via dual classical and Einstein-Podolky-Rosen channels[J]. Phys. Rev. Lea., 1993, 70(13): 1895-1899.
  • 2DEUTSCH D, EKERT A, JOZSA R, et al. Quantum privacy amplification and the security of quantum cryptography over noisy channels[J\. Phys. Rev. Lett., 1996, 77(13): 2818-2821.
  • 3SCOTT HILL, WOOTTERS WILLIAM K. Entanglement of a pair of quantum bits[J]. Phys. Rev. Lett., 1997, 78: 5022-5025.
  • 4VEDRAL V, PLENIO M B, RIPPIN M A, et al. Quantifying entanglement[J]. Phys. Rev. Lea., 1997, 78: 2275-2279.
  • 5VIDAL G, WERNER R F. A computable measure of entanglement[J]. Phys.Rev.A., 2002, 65:032314-032317.
  • 6ARNESEN M C, BOSE S, VEDRAL V. Natural Thermal and magnetic Entanglement in 1D Heisenberg Model[J]. Phys. Rev. Lett., 2001, 87:0179014)17904.
  • 7WANG XIAOGUANG Effects of anisotropy on thermal entanglement[J]. Physics Letters A, 2001, 281(3): 101-104.
  • 8PERES A. Separability criterion for density matrices[J]. Phys.Rev. Lett., 1996, 77: 1413-1415.
  • 9ZYCZKOWSKI K, HORODECKI P, SANPERA A, et al. On the volume of the set of mixed entangled states[J]. Phys. Rev. A, 1998, 58: 883-892.
  • 10EISERT J, PLENIO M B. A comparison of entanglement measures[J]. J. Mod. Opt., 1999, 46: 145-154.

引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部