期刊文献+

Liénard方程反周期解的存在性与唯一性

Existence and Uniqueness of Anti-periodic Solutions for a Kind of Liénard Equation with a Deviating Argument
下载PDF
导出
摘要 利用Leray-Schauder度理论研究二阶Liénard方程:x″(t)+f(x(t))x′(t)+g(t,x(t-(t)))=p(t)反周期解的存在性和唯一性. In this paper, we use the Leray-Schauder degree theory to establish new results for the existence and uniqueness of anti-periodic ,solutions to a kind of Lienard equation with a deviating arguments of the form: x″(t)+f(x(t))x′(t)+g(t,x(t-τ(t)))=p(t).
出处 《广西师范学院学报(自然科学版)》 2009年第3期30-35,共6页 Journal of Guangxi Teachers Education University(Natural Science Edition)
基金 广西教育厅科研基金(200708LX163)
关键词 LIÉNARD方程 LERAY-SCHAUDER度 反周期解 Lienard equation Leray-Schauder degree anti-periodic solution
  • 相关文献

参考文献11

  • 1SHAO J, WANG L, YU Y, et al. Periodic Solutions for a kind of Lienard Equation with a Deviating Argument[J]. Journal of Computational and Applied Mathematics, 2009, 228: 174-181.
  • 2LIU B, HUANG L. Existence and Uniqueness of Periodic Solutions for a kind of Li6nard Equation with a Deviating Argument[J]. Applied Mathematics Letters, 2008, 2I(1): 56-62.
  • 3ZHOU Q, LONG F. Existence and Uniqueness of Periodic Solutions for a kind of Lienard Equation with two Deviating Arguments[J].Journal of Computational and Applied Mathematics, 2007, 206 : 1127-1136.
  • 4LU S, GE W. Periodic Solutions for a kind of Second Order Differential Equation with Multiple Deviating Arguments [J]. Applied Mathematics and Computation, 2003, 146: 195-209.
  • 5陈太勇,刘文斌,张建军,章美月.Liénard方程反周期解的存在性[J].数学研究,2007,40(2):187-195. 被引量:6
  • 6LIU B. Anti-periodic Solutions for Forced Rayleigh-type Equations[J]. Nonlinear Analysis: Real World Applications, 2009, 10: 2850-2856.
  • 7CHEN Y, NIETO j J, OREGAN D. Anti-periodic Solutions for Fully Nonlinear First-order Differential Equations[j ]. Mathematical and Computer Modelling, 2007, 46: 1183-1190.
  • 8WU R. An Anti-periodic LaSalle Oscillation Theorem[J ]. Applied Mathematics Letters, 2008, 21 : 928-933.
  • 9LIU B. An Anti-periodic LaSalle Oscillation Theorem for a class of Functional Differential Equations[J ]. Joumat of Computational and Applied Mathematics, 2009, 223: 1081-1086.
  • 10DEIMLING K. Nonlinear Functional Analysis[ M]. New York: Springer-Verlag, 1985.

二级参考文献1

共引文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部