期刊文献+

中国股票市场的日内波动特征研究

Characteristics of the Study on the Fluctuations in One Day of China's Stock Market
下载PDF
导出
摘要 采用沪深300指数的日内数据,运用方差分析并进行方差检验的方法,对各个时点间隔24小时的收益率波动情况进行分析,发现在交易期间收益率方差呈现"W"型变化,且交易时段的收益波动要大于非交易时段的收益波动。 Using variance and variance test, this paper during the 24-hour interval by Shanghai and Shenzhen analyzes the volatility rate for each time point 300 index intraday trading data and finds that the variance of return rate is at a "W"-type changes during trading. during the period of trading is much larger than the volatility during the It also finds that the volatility period of non-trading.
出处 《浙江万里学院学报》 2009年第5期17-21,共5页 Journal of Zhejiang Wanli University
基金 国家自然科学基金(编号:70873113)
关键词 日内波动 收益率 开盘价 收盘价 volatility in one day income rate opening price closing price
  • 相关文献

参考文献7

  • 1Amihud,Yakov, Haim Mendelson. Volatility, efficiency, and trading:Evidence from the Japanese stock market[J]. Journal of Finance, 1987(46) :1765-1789.
  • 2Stoll,Hans R., Robert E. et al. Stock market structure and volatility[J]. Review of Financial studies,1990(3): 37-71.
  • 3Amihud. Y.,H. Mendelson, M. Murgia. Stock Market Microstructure and Return Volatility[J]. Journal of Banking and Finance, 1990(14) :423-440.
  • 4French, K.. Trading Mechanisms, Value-Discovery : A Comment[J]. Carnegie-Rochester Conference Series on Public Policy, 1991 (34) : 131-134.
  • 5Masulis. R.,V. Ng. Overnight and Daytime Stock Return Dynamics on the London Stock Exchange, working paper,Vanderbilt University and University of Michigan, 1992.
  • 6戴晓凤,杨军.交易机制与股票市场波动性关系的实证检验——基于GARCH模型的分析[J].金融教育研究,2009,23(1):3-5. 被引量:1
  • 7周林.股票波动率模拟及对中国市场预测效果的实证研究[J].数学的实践与认识,2009,39(3):25-34. 被引量:3

二级参考文献20

  • 1Andersen T G, Bollerslev T. Answering the skeptics: Yes, standard volatility models do provide accurate forecasts[J]. International Economic Review, 1998,39 :885-905.
  • 2Goyal A, Predictability of Stock Return Volatility from GARCH Models. http ://www. bus. emory. edu/AGoyal/ docs/Garch. pdf, 2000.
  • 3Hansen Peter, Asger Lunde. A Forecast Comparison of Volatility 'Models: Does Anything Beat a GARCH (1, 1)[M]. Brown University Working Paper,2002.
  • 4Balaban. Comparative Forecasting Performance of Symmetric And Asymmetric Conditional Volatility Models Of An Exchange Rate, http://mfs.rutgers. edu/conferenees/10/mfcindex/files/MFC-119%20Balaban. pdf,2002.
  • 5Gavala A, Nikolay Gospodinov, Deming Jiang. Forecasting Stock Market Volatility. http ://alcor. concordia. ca/ gospodin/research/vol_forc. pdf,2003.
  • 6Andersen TG, Bollerslev T, Diebold FX, Labys P. Modeling and forecasting realized volatility[J].Econometrica, 2003,71:579-625.
  • 7黄后川.中国股票市场波动率的高频估计、特性与预测[C].万方数据资源系统http://d12.1ib.tongji.edu.cn/wanfang/.博士学位论文,2002.
  • 8Chang,R.P,Rhee,S.G,Soedigno,S.Price volatility ofIndonesian stocks. Pacific Basin Finance Journal . 1995
  • 9Cheung,Y,R.Y Ho,P.Pope,P.Draper.IntradayStock Return Volatility:The Hong Kong Evidence. Pacific Basin Finance Journal . 1994
  • 10Choe,H,Shin,H.S.An analysis of intraday and intradayreturn volatility—evidence from the Korea Stock Exchange. Pa-cific-Basin finance Journal . 1993

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部