期刊文献+

双重分解法及其与Adomian分解法的比较

Comparison Between Adomian Double Decomposion Method and Adomian Decomposion Method
下载PDF
导出
摘要 在求解初边值问题Adomian分解法的基础上,研究了求二维偏微分方程边值问题的双重Adomian分解法,对Adomian分解法的初始项作了进一步分解,使逆算符分解法得到了改进。通过具体微分方程算例对双重分解法和Adomian分解法进行了比较,验证了双重分解算法的有效性。这一改进的分解算法既能提高精度又能减少计算量,而且还使各级近似解都能准确满足全部初边值条件。 Based upon Adomian decomposition method, we have studied Adomian double decomposition method in this paper. The initial term in Adomian decomposition method has been further decomposed, and modified inverse vector method is obtained. The efficiency of double decomposition method is verified by the comparison between double decomposition method and Adomian decomposition method for solving differential equations. The experimental results demonstrate that the Adomian double decomposition method is better than the Adomian decomposition method for solving initial and boundary partial differential equation problems.
作者 潘平 朱永贵
出处 《中国传媒大学学报(自然科学版)》 2009年第3期15-18,共4页 Journal of Communication University of China:Science and Technology
关键词 双重分解法 ADOMIAN分解法 偏微分方程边值问题 逆算符 double decomposition method Adomian decomposition method partial differential equation boundary problems inverse operator
  • 相关文献

参考文献7

  • 1Adomian G. Stochastic Systems [ M ]. New York : Academic Press, 1983.
  • 2方锦清.逆算符理论方法及其在非线性物理中的应用[J].物理学进展,1993,13(4):441-560. 被引量:32
  • 3方锦清,姚伟光.逆算符方法求解非线性动力学方程及其一些应用实例[J].物理学报,1993,42(9):1375-1384. 被引量:30
  • 4Adomian G. A review of the decomposition method and some recent results for nonlinear equations[ J] . Computers Math Applic , 1991 ,21 (5) : 1012127.
  • 5Wazwaz A M. A new method for solving singular initial value problems in the second order ordinary differential equations [ J ]. Appl Math Comput,2002 ,128:45250.
  • 6Wazwaz A M. The numerical solution of sixt h2order boundary value problems by t he modified decomposition method [ J ]. Appl Math Comput,1999 ,102 (1) :77283.
  • 7Cherruault Y. Convergence of Adomianps method[J]. Kybemetes ,1989 ,18 (2) : 31238.

二级参考文献5

共引文献52

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部