期刊文献+

基于非下采样Contourlet和MRF的纹理图像分割

TEXTURE IMAGE SEGMENTATION BASED ON NON-DOWN SAMPLING CONTOURLET AND MARKOV RANDOM FIELD
下载PDF
导出
摘要 提出了一种基于非下采样Contourlet变换(NSCT)和马尔科夫随机场(MRF)相结合的纹理图像分割算法。算法包括两个步骤,首先通过NSCT实现对图像纹理特征的提取,并使用模糊C-均值完成对图像的初始分割;然后将初始分割结果用MRF模型表示,通过贝叶斯置信传播得到图像的最终分割结果。实验结果表明,对于纹理图像,该方法在分割错误率、区域一致性以及边缘的准确性方面都比传统小波变换的方法有了明显的改善。 A texture image segmentation algorithm based on combination of non-down sampling Contourlet transform (NSCT) and Markov random field model is proposed. The algorithm consists of two steps. First, the texture feature of image is extracted by NSCT, and the image is segmented initially by fuzzy c-means; Second, the primarily segmented results are expressed by MRF model, and the final segmentation resuits are gained via Bayes belief propagation. The experimental results show that this algorithm is effective for texture image, it provides much better results in error rate of segmentation, region homogeneity and edge accuracy than those of traditional wavelet transforming methods.
出处 《计算机应用与软件》 CSCD 2009年第10期53-54,104,共3页 Computer Applications and Software
基金 国防预研基金资助项目(9140A01060606DZ01)
关键词 纹理分割 非下采样CONTOURLET变换 马尔科夫随机场 贝叶斯置信传播 Texture segmentation Non-down sampling Contourlet transform Markov random field Bayes belief propagation
  • 相关文献

参考文献6

  • 1Salari E, Ling Z. Texture segmentation using hierarchical wavelet decomposition. Pattern Recognition,1997,30(5) :729 -742.
  • 2Cunha A L da, Zhou J, Do M N. The nonsubsampled contourlet transform: theory, design, and applications. IEEE Trans. Image Process. 2006,15(10) :3089 -3101.
  • 3Weiss Y, Freeman W T. On the optimality of solutions of the max-product beliefpropagation algorithm in arbitrary graphs. IEEE Transactions on Information Theory, 2001,47(2) :723-735.
  • 4焦李成,谭山.图像的多尺度几何分析:回顾和展望[J].电子学报,2003,31(z1):1975-1981. 被引量:227
  • 5Geman S, Geman D. Stochastic relaxation, gibbs distributions, and the bayesian restoration of images. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1984,6 (6) :721 - 741.
  • 6Felzenszwalb P, Huttenlocher D. Efficient belief propagation for early vision. International Journal of Computer Vision, 2006, 70 ( 1 ) : 41 - 54.

二级参考文献58

  • 1[5]Stephane Mallat.信号处理的小波导引[M].杨力华,等译.北京:机械工业出版社,2003.
  • 2[1]EJ Candes. Ridgelets:Theory and Applications[D].USA:Department of Statistics, Stanford University, 1998.
  • 3[2]E J Candes. Monoscale Ridgelets for the Representation of Images with Edges[ R]. USA: Department of Statistics, Stanford University, 1999.
  • 4[3]Candes E J, D L Donoho. Curvelets[R]. USA: Department of Statistics,Stanford University, 1999.
  • 5[4]E L Pennec, S Mallat. Image compression with geometrical wavelets[A]. In Proc. of ICIP' 2000 [ C ]. Vancouver, Canada, September,2000.661-664.
  • 6[5]M N Do, M Vetterli. Contourlets[ A ] .J Stoeckler, G V Welland. Beyond Wavelets [ C ]. Academic Press, 2002.
  • 7[7]D L Donoho,M Vetterli,R A DeVore, I Daubechies. Data compression and harmonic analysis [ J ]. IEEE Trans, 1998, Information Theory-44(6) :2435 - 2476.
  • 8[8]M Vetterli. Wavelets, approximation and compression [ J ]. IEEE Signal Processing Magazine,2001,18(5) :59 - 73.
  • 9[9]R A DeVore. Nonlinear approximation[ A].Acta Numerica[ M]. Cambridge University Press, 1998.
  • 10[10]D L Donoho. Sparse component analysis and optimal atomic decomposition[J]. Constructive Approximation, 1998,17:353 - 382.

共引文献226

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部