期刊文献+

拱圈拓扑优化及结果合理性研究 被引量:2

Topology optimization and rationality of results for arch rings
下载PDF
导出
摘要 为验证拱圈拓扑优化的可行性和合理性,根据拱坝水平拱圈的特点,采用拓扑优化均匀化算法对某拱坝不同坝高处的水平拱圈进行结构优化计算,利用滤波法和多重网格法解决了在拱圈拓扑优化过程中出现的数值不稳定问题.对优化得到的下游面带有反弯段的结构进行不同的下游面曲线拟合,应力校核结果表明:拓扑优化得到的拱圈不仅是可行的,并且比传统形状的拱圈更为合理. In order to validate the feasibility and rationality of the topology optimization for arch rings, the topology homogenization algorithm was employed to calculate the structural optimization of horizontal arc rings of an arc dam at different heights according to the characteristics of horizontal arch rings of arch dams. The filtering method and multi-grid method were used to solve the numerical instability phenomena during the topology optimization of arch rings. The downstream face structure with inflection obtained from the topology optimization was fitted by use of different downstream face curves. The stress check results of the arch rings show that the arch rings based on the topology optimization are feasible, furthermore, they are more rational than other traditional arch rings.
作者 孙蓓 苏超
出处 《河海大学学报(自然科学版)》 CAS CSCD 北大核心 2009年第5期578-581,共4页 Journal of Hohai University(Natural Sciences)
基金 国家自然科学基金(50579011)
关键词 拱圈 拓扑优化 均匀化算法 反弯段 数值不稳定现象 arch ring topology optimization homogenization algorithm inflection numerical instability phenomenon
  • 引文网络
  • 相关文献

参考文献9

  • 1BENDSOE M P, MOTA S. Topology design of structures[ M ]. NATO ASI: Kluwer Academic Publishers, 1993.
  • 2HAMMER V B, OLHOFF N. Topology optimization of continuum structures subjected to pressure loading [J]. Structural and Multidisciplinary Optimization, 2000,19 (2) : 85-92.
  • 3BREMICKER M, KIKUCHI N, CHIREHDAST M, et al. Integrated topology and shape optimization in structural design[J]. Mech Struct and Mach, 1991,19(4) :551-587.
  • 4YOUN S K,PARK S H.A study on the shape extraction process in the structural topology optimisation using homogenized material[J]. Computer & Structures, 1997,62(3) :527-538.
  • 5BENDEOE M P, KIKUCHI N. Generating optimal topologies in structural design using a homogenization method[J]. Computer Methods in Applied Mechanics and Engineering, 1988,71(2) : 179-224.
  • 6穆春燕,苏超,丛赛飞.拱坝二维水平拱圈的拓扑优化研究[J].黑龙江水专学报,2007,34(4):1-3. 被引量:2
  • 7穆春燕,苏超.拓扑优化方法在拱坝设计中的应用研究[J].浙江水利水电专科学校学报,2007,19(3):1-4. 被引量:2
  • 8SWAN C, COLBY, KOSAKA I. Voigt-Reuss topology optimaization for structures with nonlinear material behaviors[ J]. Int J Numer Meth Energy, 1997,40:3785-3814.
  • 9DIAZ A R, SIGMUND O. Checkerboard patters in layout optimization[ J]. Struct Optim, 1995,10: 40-45.

二级参考文献16

  • 1郭旭,赵康.基于拓扑描述函数的连续体结构拓扑优化方法[J].力学学报,2004,36(5):520-526. 被引量:35
  • 2罗震,陈立平,黄玉盈,张云清.连续体结构的拓扑优化设计[J].力学进展,2004,34(4):463-476. 被引量:154
  • 3孙宝元,杨贵玉,李震.拓扑优化方法及其在微型柔性结构设计中的应用[J].纳米技术与精密工程,2003,1(1):24-30. 被引量:11
  • 4R J YANO. Topology optimization of vehicle structures[J]. Proceedings of the Conference on Optimization in Industry, 1997,233-242.
  • 5M P BENDSOE, N KIKUCHI. Generating optimal topologies in structural design using a homogenization method[J]. Comp. Meth. Appl. Mech. Engrg. ,1988,71(1):197-224.
  • 6M P BENDSOE. Scale effects in the optimal design of a microstructured medium against buckling[J]. Int. J. Solids and Structures, 1990, 26:725-741.
  • 7M P BENDSOE, H C RODRIGUES. Integrated topology and boundary shape optimization of 2 D solids [J]. Comp. Meth. Appl. Mech. Engrg. ,1991.87:15-34.
  • 8TENEk L H, HAGIWARA I. optimization of material distribution within isotropic and anisotropic plates using homogenization[J]. Comput Methods Appl Mech Engrg, 1993,109 : 155-167.
  • 9M P BENDSOE,O SIGMUND. Material interpolations in topology optimization[J]. Archive of Applied Mechacics, 1999,69:635-654.
  • 10M P BENDSOE,O SIGMUND. Material interpolations in topology optimization[J]. Archive of Appl. Mech. , 1999,69:725-741.

共引文献2

同被引文献10

引证文献2

二级引证文献4

;
使用帮助 返回顶部