期刊文献+

彩票购买者认知偏差量表初步编制及信效度检验 被引量:5

Development of Lottery Related Cognitive Distortions Scale for Chinese Lottery Buyers
原文传递
导出
摘要 目的:初步编制我国电脑型彩票购买者认知偏差量表。方法:根据国外相关理论和评估工具收集适用于我国购彩者的量表项目。经前期访谈、项目筛选和专家讨论等确定项目。按地域和彩票销售状况选择6省25个地市,随机抽取购彩者3584名施测,总样本随机分成两组分别进行探索性和验证性因素分析。结果:经项目分析和探索性因素分析删除项目后,最终形成19个项目的认知偏差量表,包括概率谬误、控制幻想、关系错觉和过于乐观的预期等四个因子。总量表及各因子的α系数在0.56-0.80之间;分半信度0.72;模型拟合指数均达到要求(χ2/df=5.45;Mc=0.93;IFI=0.95;CFI=0.95;NFI=0.94;RSMEA=0.050)。结论:本研究编制的电脑型彩票购彩者认知偏差量表具有较好的心理测量学品质,可在未来研究中应用。 Objective: This study aims to develop a Chinese Lottery Related Cognitive Distortions Scale for Chinese computerized lottery buyers. Methods: 22 items were filtered and reworked by authors and applied to 3584 Welfare Lottery buyers from 25 cities of 6 provinces. Measures including demographic features questionnaire and cognitive distortions scale were taken. All cases were split to two groups: One sample of 1791 cases for item analysis and exploratory factor analysis (EFA), and the other 1793 cases for confirmatory factor analysis (CFA). Results: After item analysis and exploratory analysis, 19 items remained and they were divided into four factors: optimistic expectation, gamblers' fallacy, illusory correlation and illusion of control. These factors could explain 42.86% of total variance, which were confirmed by CFA (X2/df=5.45 ; Mc =0.93 ; IFI=0.95 ; CFI=0.95 ; NFI =0.94; RSMEA =0.050). The internal consistency cronbach α of the questionnaire answered to the basic statistic criterion(r=0.56-0.80). Conclusion: The Lottery Related Cognitive Distortions Scale has good psychometric features and could be applied to Chinese lottery buyers.
作者 王毅 高文斌
出处 《中国临床心理学杂志》 CSSCI CSCD 2009年第5期529-531,525,共4页 Chinese Journal of Clinical Psychology
关键词 购彩者 认知偏差 心理测量学研究 Lottery buyer Cognitive distortion Psychometric study
  • 相关文献

参考文献19

  • 1曾忠禄 张冬梅.广州市彩票购买者特征分析.澳门理工学报,2006,(1).
  • 2李菲.去年福利彩票销量再上600亿.2009.http://news.xinhuanet.com/mrdx/2009-01/02/content_10590060.htm.
  • 3李仁军,刘炳伦,边延艳.济南市彩民心理健康状况分析[J].精神医学杂志,2008,21(5):324-326. 被引量:4
  • 4管晓琴.认知偏差与大学生心理健康关系探讨[J].科技信息(科学教研),2008,14:489-489.
  • 5杨清艳,徐子燕,李占江.非理性信念及其评估方法的研究现状[J].中国临床心理学杂志,2006,14(1):40-42. 被引量:16
  • 6Tversky A,Kahneman D. Judgment under uncertainty: Heuristics and biases. Science,New Series, 1974,185 (4157) : 1124-1131.
  • 7Raylu N,Oei TP. Pathological gambling:A comprehensive review. Clinical Psychology Review, 2002,22(7) : 1009-1061.
  • 8Steenbergh TA,Meyers AW,May RK,et al. Development and validation of the gamblers' beliefs questionnaire. Psychology of Addictive Behaviors,2002,16(2): 143-149.
  • 9Steven J, Richard N. A new instrument to measure cognitive distortions in video lottery terminal users :The informational biases scale (IBS). Journal of Gambling Studies,2003,19 (4) : 387.
  • 10Oei TP, Lin J, Raylu N. Validation of the Chinese version of the gambling related cognitions scale (GRCS-C). Journal of Gambling Studies, 2007,23(3): 309-322.

二级参考文献65

  • 1鲍志宏,吉艳霞.中国体育彩票市场消费者经济行为的心理研究[J].经济与管理,2004,18(12):65-67. 被引量:8
  • 2付建斌.信念量表的初步编制[J].中国心理卫生杂志,1996,10(3):103-105. 被引量:12
  • 3林树,俞乔,汤震宇,周建,子璇(校对).投资者“热手效应”与“赌徒谬误”的心理实验研究[J].经济研究,2006,41(8):58-69. 被引量:38
  • 4[1]Tucker L R, Lewis C. The reliability coefficient for maximum likelihood factor analysis. Psychometrika, 1973, 38: 1~10
  • 5[2]Steiger J H, Lind J M. Statistically-based tests for the number of common factors. Paper presented at the Psychometrika Society Meeting, IowaCity, May, 1980
  • 6[3]Bentler P M, Bonett D G. Significance tests and goodness of fit in the analysis of covariance structures. Psychological Bulletin, 1980, 88: 588~ 606
  • 7[4]Bentler P M. Comparative fit indices in structural models. Psychological Bulletin,1990, 107: 238~ 246
  • 8[5]McDonald R P, Marsh H W. Choosing a multivariate model: Noncentrality and goodness-of-fit. Psychological Bulletin, 1990,107: 247~ 255
  • 9[6]Marsh H W, Balla J R, Hau K T. An evaluation of incremental fit indices: A clarification of mathematical and empirical processes. In: Marcoulides G A, Schumacker R E eds. Advanced structural equation modeling techniques. Hillsdale, NJ: Erlbaum, 1996. 315~ 353
  • 10[7]Browne M W, Cudeck R. Alternative ways of assessing model fit. In: Bollen K A, Long J S eds. Testing Structural Equation Models. Newbury Park, CA: Sage, 1993. 136~ 162

共引文献1347

同被引文献117

引证文献5

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部