期刊文献+

一种植入式神经控制信号传输的数据编码方法 被引量:1

A Data Coding Method for Transmitting Implantable Neural Control Signals
下载PDF
导出
摘要 采用差分编码的方式将神经控制信号传送至植入式神经信号获取系统的体内模块时,需要体内、体外模块的时钟高度同步,这使得电路的设计非常困难.文中提出了一种新的数据编码传送方法——在体外模块用脉宽调制的方法将需要传送的数据进行编码,通过二进制相移键控(BPSK)调制和解调方式传送到体内模块后,使用时钟检测器、时钟分频器、脉冲宽度计数器以及脉冲逻辑判决器进行解码,这样体内模块和体外模块可以工作在不同时钟频率,使得电路的设计和验证大为简化.该方法已经成功应用于无线植入式神经信号获取系统的板级电路中,波形测试的结果显示了该方法的可行性.经过M序列发生器所产生的1MB随机数据的传输测试未发现有误码产生,表明所设计的编解码方式具有较高的可靠性. In the transmission of neural control signals to the internal module of a implantable neural-signal acquisition system using the differential coding method,high clock synchronization between the internal and the external systems is required,which makes the circuit design extremely difficult.In order to solve this problem,a new data coding method is presented.In the external module,control signals coded by pulse-width modulation are transmitted to the internal module through binary phase shift keying(BPSK)modulation and demodulation, and the clock detector, clock divider, pulse width counter and pulse logic judger are used to decode the signals. Thus, both the internal and the external modules can work at asynchronous system clock frequencies, and the circuit design and verification are greatly simplified. The new coding method has been successfully applied to a board circuit system for wireless implantable neural-signal acquisition, and the waveform test results verify the feasibility of the method. Moreover, no error has been found in the transmission test of 1 000 000 B random data produced by a M-sequence generator, thus coming to the conclusion that the proposed coding method is highly reliable.
出处 《华南理工大学学报(自然科学版)》 EI CAS CSCD 北大核心 2009年第9期62-66,共5页 Journal of South China University of Technology(Natural Science Edition)
基金 广东省自然科学基金博士启动基金项目(8451064101000302)
关键词 数据编码 脉宽调制 神经控制信号 无线传输 植入式系统 data coding pulse-width modulation neural control signal wireless transmission implantable system
  • 相关文献

参考文献10

  • 1Yu H, Najafi K. Circuitry for a wireless microsystem for neural recording microprobes [ C ] // Proceedings of the 23rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society. Istanbul:IEEE, 2001:761-764.
  • 2Harrison R R, Watkins P T, Kier R J, et al. A low-power integrated circuit for a wireless 100-electrode neural recording system [ J]. IEEE Journal of Solid-State Circuits, 2007,42( 1 ) : 123-133.
  • 3赵海涛,吕晓迎,王余峰,王志功.透过皮肤的电磁耦合[J].东南大学学报(自然科学版),2007,37(3):368-373. 被引量:5
  • 4张国基,吴祥应,季飞,王亦方,赖声礼.微波在白血病无损探测中的应用——数值结果[J].华南理工大学学报(自然科学版),1999,27(2):7-11. 被引量:2
  • 5Park H C. Power and bandwidth efficient constant-envelope BPSK signals and its continuous phase modulation interpretation [ J ]. lEE Proceedings-Communications, 2005,152 ( 3 ) :288-294.
  • 6Donaldson N D, Perkins T A. Analysis of resonant coupled coils in the design of radio frequency transcutaneous links [ J]. Medical and Biological Engineering and Computing, 1983,21(5) :612-627.
  • 7Galbraith D C, Soma M, White R L. A wide-band efficient inductive transdermal power and data link with coupling insensitive gain [J]. IEEE Transactions on Biomedical Engineering, 1987,34(4 ) :265-275.
  • 8Djemouai A, Sawan M. Prosthetic power supplies [ M ]// Wiley Encyclopedia of Electrical and Electronics Engineering. New York : John Wiley & Sons, 1999:413- 421.
  • 9Deng S H, Hu Y M, Sawan M. A high data rate QPSK demodulator for inductively powered electronics implants [ C ]//Proceedings of International Symposium on Circuits and Systems. Island of Kos : IEEE, 2006 : 2 577- 2 580.
  • 10Dick C, Harris F, Rice M. Synchronization in software radios-carrier and timing recovery using FPGAs [ C ] /// IEEE Symposium on Field Programmable Custom Computing. San Jose : IEEE ,2000 : 195-204.

二级参考文献9

  • 1王志功,吕晓迎,顾晓松.中枢神经信号微电子技术检测、处理与重建研究[C]//第14届中国神经网络学术会议论文集.合肥:合肥工业大学出版社,2004:10-15.
  • 2Weber D J,Stein R B,Chan K M,et al.BIONic walkaide for correcting foot drop[J].IEEE Transactions on Neural Systems and Rehabilitation Engineering,2005,13(2):242-246.
  • 3Ghovanloo M,Otto K J,Kipke D R,et al.In vitro and in vivo testing of a wireless multichannel stimulating telemetry microsystem[C]//Proceedings of the 26th Annual International Conference of the IEEE EMBS,2004,2(6):4294-4297.
  • 4王志功.中枢神经系统信号记录、处理、再生方案[R].南京:东南大学射频与光电集成电路研究所,2004.
  • 5Chen H.Development of wireless energy transmission for implantable biomedical microsystem and study of power transmission in bio tissues[D].Tianwan,China:Chung Yuan Christian University,2003:21-27.
  • 6Neagu C R,Jansen H V,Smith A,et al.Characterization of a planar microcoil for implantable microsystems[J].Sensors and Actuators Physical,1997,207(1/2/3):599-611.
  • 7Klaus Finkenzeller (German).RFID technology[M].3rd ed.Beijing:Publishing House of Electronics Industry,2006:52-55.
  • 8Najafi K,Ghovanloo M.A wireless implantable multichannel digital neural recording system for a micromachined sieve electrode[J].Journal of Solid-State Circuits IEEE,1998,33(1):109-118.
  • 9倪昊,徐元森.非接触式IC卡天线的CMOS集成化设计[J].功能材料与器件学报,2003,9(2):195-200. 被引量:4

共引文献5

同被引文献14

  • 1Nielsen J H,Bruun E.An implantable CMOS front-end system for nerve-signal sensors [J] .Analog Integrated Cir- cuits and Signal Processing, 2006,46( 1 ) :7-15.
  • 2Yamu H, Sawan M.CMOS front-end amplifier dedicated to monitor very low amplitude signal from implantable sensors [C]//Proceedings of the 43rd IEEE Midwest Sym- posium on Circuits and Systems.Lansing: IEEE,2000 : 298-301.
  • 3Enz C C,Temes G C.Circuit techniques for reducing the effects of opamp imperfections:autozeroing,correlated double dampling, and chopper stabilization [ J ]. Proceedings of the IEEE, 1996,84(11 ) : 1584-1614.
  • 4Wu R, Makinwa K A A, Huijsing J H.A chopper current- feedback instrumentation amplifier with a 1 mHz l/f noise comer and an AC-coupled ripple reduction loop [J].IEEE Journal of Solid-State Circuits, 2009,44 ( 12 ) : 3232- 3243.
  • 5Fan Q, Sebastiano F ,Huijsing J H, et al.A 1.8 ixW 60 nV/I-Iz capacitively-coupled chopper instrumentation amplifier in 65 nm CMOS for wireless sensor nodes [J].IEEE Journal of Solid-State Circuits ,2011,46(7) : 1534-1543.
  • 6Xu J ,Yazicioglu R F, Grundlehner B, et al.A 160 μW 8- channel active electrode system for EEG monitoring [J]. IEEE Transactions on Biomedical Circuits and Systems, 2011,5(6) :555-567.
  • 7Harrison R R, Charles C.A low-power low-noise CMOS amplifier for neural recording applications [J]. IEEE Journal of Solid-State Circuits, 2003,38 (6) : 958-965.
  • 8Chae M, Kim J, Liu W.Fully-differential self-biased bio- potential [J].Electronics Letters,2008,44(24) : 1390-1391.
  • 9Do A T,Tan Y S,Lam C,et al.Low power implantable neural recording front-end [ C ]//Proceedings of 2012 In- ternational SoC Design Conference. Jeju Island:IEEE, 2012 : 387-390.
  • 10王忆.何乐年.严晓浪.温度补偿的30nACMOS电流源及在LDO中的应用[M]//何乐年,王忆.模拟集成电路设计与仿真.北京:科学出版社,2008:269-271.

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部