期刊文献+

BIRCH混合属性数据聚类方法 被引量:3

Heterogeneous data clustering algorithm of BIRCH
下载PDF
导出
摘要 数据聚类是数据挖掘中的重要研究内容。现实世界中的数据往往同时具有连续属性和离散属性,但现有大多数算法局限于仅处理其中一种属性,而对另一种采取简单舍弃的办法丢失聚类信息和降低聚类质量。一些能处理混合属性的算法又往往处理的属性过多,导致计算量的大增。提出了一种基于BIRCH算法的混合属性数据的聚类算法;在UCI数据集上的实验表明,文中提出的算法具有较好的性能。 Data clustering is an important issue in data mining.Many real-world data have both continuous attributes and categorical attributes,which are usually called heterogeneous attributes.However,most of the existing mining algorithms can manipulate only continuous attributes or categorical attributes.Simply omitting categorical or continuous attributes may lose important information about the data and decrease the mining quality.Some other algorithms which can manipulate continuous attributes and cate- gorical attributes have low efficiency,because of a lot of attributes.This paper proposes a novel approach for clustering data with heterogeneous features based on BIRCH.Experimental results on public data sets show that the proposed algorithm is robust.
作者 李贤 罗可
出处 《计算机工程与应用》 CSCD 北大核心 2009年第30期123-125,共3页 Computer Engineering and Applications
基金 国家自然科学基金No.10826099 No.10871031 湖南省科技计划项目基金No.2008FJ3015 湖南省教育厅科研项目基金No.07A001~~
关键词 数据挖掘 聚类 BIRCH算法 混合属性 data mining clustering BIRCH algorithm heterogeneous attribute
  • 相关文献

参考文献9

  • 1Muthukrisbnan S.Data streams:Algorithms and apppication[M]. Hanover, MA, USA : Now Publishers Inc, 2005.
  • 2Gaber M M,Zaslavsky A B,Krishnaswamy S.Mining data Streams: A review[J].SIGMOD Record, 2005,34(2 ) : 18-26.
  • 3Kaufan L,Rousseeuw P J.Finding groups in data:An introduction to cluster analysis[M].New York:John Wiley&Sons, 1990.
  • 4Han J W.Kambr M.Data mining concepts and techniques[M].Beijing:Higher Education Press,2001 : 145-176.
  • 5Guha S,Rastogi R,Shim K.CURE:An efficient clustering alogorithm for large database[C]//Haas L M,Tiwary A.Proceedings of the ACM SIGMOD International Conference on Management of Data. Seattle : ACM Press, 1998 : 73-84.
  • 6忻凌,倪志伟,黄玲.基于数据流的BIRCH改进聚类算法[J].计算机工程与应用,2007,43(5):166-168. 被引量:6
  • 7蒋盛益,李霞.一种改进的BIRCH聚类算法[J].计算机应用,2009,29(1):293-296. 被引量:25
  • 8杨春宇,周杰.一种混合属性数据流聚类算法[J].计算机学报,2007,30(8):1364-1371. 被引量:22
  • 9Aggarwal C C,Han Jia-wei,Wang Jian-yong,et al.A framework for projected clustering of high dimensional data streams[C]//Proceedings of the 30th Inernational Conference on Very Large Data Bases, Toronto, Canada, 2004 : 852-863.

二级参考文献33

  • 1蒋盛益,李庆华.聚类分析中的差异性度量方法研究[J].计算机工程与应用,2005,41(11):146-149. 被引量:4
  • 2朱蔚恒,印鉴,谢益煌.基于数据流的任意形状聚类算法[J].软件学报,2006,17(3):379-387. 被引量:51
  • 3HANJ,KAMBERM.数据挖掘概念与技术[M].范明,孟小峰,译.北京:机械工业出版社,2006.
  • 4ZHANG TIAN, RAMAKRISHNAN R, LIVNY M. BIRCH: An efficient data clustering method for very large databases[ J]. ACM SIGMOD Record, 1996, 25(2) : 103 - 114.
  • 5HUANG ZHEXUE. Extensions to the k-means algorithm for clustering large data sets with categorical values[ J], Data Mining and Knowledge Discovery, 1998, 2(3) : 283 - 304.
  • 6MACQUEEN J. Some methods for classification and analysis of multivariate observations[ C]// Proceedings of 5th Berkeley Symposium on Mathematical Statistics and Probability. Berkeley: University of California Press, 1967, 1 : 281 - 297.
  • 7HUANG ZHEXUE. A fast clustering algorithm to cluster very large categorical data sets in data mining[ C]// Proceedings of SIGMOD Workshop on Research Issues on Data Mining and Knowledge Discovery. [S. l ] : ACM Press, 1997:1 -8.
  • 8MERZ C J, MERPHY P. UCI repository of machine learning databases[ EB/OL]. [ 2008 - 09 - 01 ]. http://www, ics. uci. edu/-mlearn/MLRRepository, html.
  • 9Guha S,Mishra N,Motwani R,et al.Clustering data streams[C]//Proceedings of FOCS 2000,2000:359-366.
  • 10Ordonez C.Clustering binary data streams with K-means[C]//Proceedings of DMKD'03,June 13,2003:12-19.

共引文献49

同被引文献22

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部