期刊文献+

重力固体潮IMF的AM-FM模型及其非线性拟合 被引量:3

AM-FM model of gravity tide IMF and its non-linear data fitting
下载PDF
导出
摘要 首先建立AM-FM数学模型,用多个相近载波的调幅信号组合描述它。利用最小二乘法对幅度调制和频率调制两个部分分别进行非线性拟合;拟合以相关系数满足一定条件为精度控制原则,拟合项数以相邻相关系数不再显著变化为判定条件。有效性检验证明该方法切实可行。重力固体潮IMF的拟合结果表明,AM-FM数学模型可以很好地刻画重力固体潮IMF;重力固体潮是多个AM-FM信号合成的复合信号。为后续深入研究重力固体潮的AM-FM信号特征、循环平稳信号特征等性质建立了良好的数学基础。 In this paper,the non-linear least squares data fitting method for the AM-FM model of the the gravity tide IMF signal is proposed.Firstly,the AM-FM model is decomposed amplitude modulation signal and frequency modulation signal which is fitted by using the non-linear least squares method separately.The fitting number is determined by the correlation coefficient.Then the IMF signal of the gravity tide is fitted by the AM-FM model.The experimental results show that the gravity tide IMF signal can be well described by the AM-FM signal.A foundation is established for further discussion its characteristic such as the cyclostationarity.
出处 《计算机工程与应用》 CSCD 北大核心 2009年第30期138-142,共5页 Computer Engineering and Applications
基金 国家自然科学基金 No.40774032~~
关键词 AM-FM模型 非线性最小二乘法 数据拟合 重力固体潮 本征模态函数(IMF) AM-FM model non-linear least square method data fitting gravity tide Intrinsic Mode Function(IMF)
  • 相关文献

参考文献14

二级参考文献54

  • 1燕子宗,费浦生.线性规划流动等值面算法[J].计算数学,2004,26(4):437-444. 被引量:4
  • 2燕子宗,费浦生,王孝礼.基于流动等值面的新的单纯形算法研究[J].长江大学学报(自然科学版),2004,1(2):64-68. 被引量:3
  • 3[1]Shinozuka, M., Monte carlo solution of structural dynamics[J], Int J of Comput and Struc, 1972, 2:855~874
  • 4[2]Shinozuka, M. and Jan, C. -M., Digital simulation of random processes and its applications[J], J of Sound and Vibation, 1972, 25:111~128
  • 5[3]Gersch, W. and Yonemoto, J., Synthesis of multi-variate random vibration systems: A two-stage least square ARMA Model approach[J], J of Sound and Vibration, 1977, 52: 553~565
  • 6[4]Elishakoff. I., Buckling of a stochastically imperfect finite column on a nonlinear elastic foundation[J], J of Appl Mech, ASME, 1979, 46:411~416
  • 7[5]Shinozuka, M. and Sato, Y., Simulation of nonstationary random process[J], J of Eng Mech, ASCE, 1967, 93:11~40
  • 8[6]Yang, J. N., Simulation of random envelope processes[J], J of Sound and Vibration, 1972, 21:73~85
  • 9[7]Shinozuka, M. and Deodatis, G., Stochastic processes and their digital simulation[M], Oxford University Press, 2000
  • 10[8]Bracewell, R. N., The fast hartley transform[A], Proc of the IEEE[C], 1984,72:1010~1018

共引文献72

同被引文献21

引证文献3

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部